These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 27415256)

  • 1. Covariant Lyapunov vectors of chaotic Rayleigh-Bénard convection.
    Xu M; Paul MR
    Phys Rev E; 2016 Jun; 93(6):062208. PubMed ID: 27415256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal dynamics of the covariant Lyapunov vectors of chaotic convection.
    Xu M; Paul MR
    Phys Rev E; 2018 Mar; 97(3-1):032216. PubMed ID: 29776133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying spatiotemporal chaos in Rayleigh-Bénard convection.
    Karimi A; Paul MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046201. PubMed ID: 22680550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chaotic Rayleigh-Bénard convection with finite sidewalls.
    Xu M; Paul MR
    Phys Rev E; 2018 Jul; 98(1-1):012201. PubMed ID: 30110726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lyapunov exponents for small aspect ratio Rayleigh-Bénard convection.
    Scheel JD; Cross MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066301. PubMed ID: 17280142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extensive chaos in Rayleigh-Bénard convection.
    Paul MR; Einarsson MI; Fischer PF; Cross MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):045203. PubMed ID: 17500952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Length scale of a chaotic element in Rayleigh-Bénard convection.
    Karimi A; Paul MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066212. PubMed ID: 23368029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization properties of covariant Lyapunov vectors for quasi-one-dimensional hard disks.
    Morriss GP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056219. PubMed ID: 23004855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of extensive spatiotemporal chaos in Rayleigh-Benard convection.
    Egolf DA; Melnikov IV; Pesch W; Ecke RE
    Nature; 2000 Apr; 404(6779):733-6. PubMed ID: 10783880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using covariant Lyapunov vectors to quantify high-dimensional chaos with a conservation law.
    Barbish J; Paul MR
    Phys Rev E; 2023 Nov; 108(5-1):054202. PubMed ID: 38115456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlations between the leading Lyapunov vector and pattern defects for chaotic Rayleigh-Bénard convection.
    Levanger R; Xu M; Cyranka J; Schatz MF; Mischaikow K; Paul MR
    Chaos; 2019 May; 29(5):053103. PubMed ID: 31154776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the role of diffusive coupling in spatiotemporal chaos.
    Raj A; Paul MR
    Chaos; 2024 Oct; 34(10):. PubMed ID: 39374436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covariant Lyapunov analysis of chaotic Kolmogorov flows.
    Inubushi M; Kobayashi MU; Takehiro S; Yamada M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016331. PubMed ID: 22400681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Front propagation in a chaotic flow field.
    Mehrvarzi CO; Paul MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012905. PubMed ID: 25122358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictable nonwandering localization of covariant Lyapunov vectors and cluster synchronization in scale-free networks of chaotic maps.
    Kuptsov PV; Kuptsova AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032901. PubMed ID: 25314498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covariant Lyapunov vectors from reconstructed dynamics: the geometry behind true and spurious Lyapunov exponents.
    Yang HL; Radons G; Kantz H
    Phys Rev Lett; 2012 Dec; 109(24):244101. PubMed ID: 23368323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between covariant and orthogonal Lyapunov vectors.
    Yang HL; Radons G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046204. PubMed ID: 21230362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing dynamics with covariant Lyapunov vectors.
    Ginelli F; Poggi P; Turchi A; Chaté H; Livi R; Politi A
    Phys Rev Lett; 2007 Sep; 99(13):130601. PubMed ID: 17930570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability analysis of chaotic systems from data.
    Margazoglou G; Magri L
    Nonlinear Dyn; 2023; 111(9):8799-8819. PubMed ID: 37033111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperbolicity and the effective dimension of spatially extended dissipative systems.
    Yang HL; Takeuchi KA; Ginelli F; Chaté H; Radons G
    Phys Rev Lett; 2009 Feb; 102(7):074102. PubMed ID: 19257674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.