These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 27415267)

  • 1. Kuramoto model with uniformly spaced frequencies: Finite-N asymptotics of the locking threshold.
    Ottino-Löffler B; Strogatz SH
    Phys Rev E; 2016 Jun; 93(6):062220. PubMed ID: 27415267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite-size scaling in the Kuramoto model.
    Coletta T; Delabays R; Jacquod P
    Phys Rev E; 2017 Apr; 95(4-1):042207. PubMed ID: 28505801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite-size scaling in the system of coupled oscillators with heterogeneity in coupling strength.
    Hong H
    Phys Rev E; 2017 Jul; 96(1-1):012213. PubMed ID: 29347132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing the locking threshold for rings and chains of oscillators.
    Ottino-Löffler B; Strogatz SH
    Phys Rev E; 2016 Dec; 94(6-1):062203. PubMed ID: 28085469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully synchronous solutions and the synchronization phase transition for the finite-N Kuramoto model.
    Bronski JC; DeVille L; Park MJ
    Chaos; 2012 Sep; 22(3):033133. PubMed ID: 23020472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite-size scaling, dynamic fluctuations, and hyperscaling relation in the Kuramoto model.
    Hong H; Chaté H; Tang LH; Park H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022122. PubMed ID: 26382359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exact results for the Kuramoto model with a bimodal frequency distribution.
    Martens EA; Barreto E; Strogatz SH; Ott E; So P; Antonsen TM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026204. PubMed ID: 19391817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mode locking in systems of globally coupled phase oscillators.
    Eydam S; Wolfrum M
    Phys Rev E; 2017 Nov; 96(5-1):052205. PubMed ID: 29347775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linear reformulation of the Kuramoto model of self-synchronizing coupled oscillators.
    Roberts DC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031114. PubMed ID: 18517336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vortices and the entrainment transition in the two-dimensional Kuramoto model.
    Lee TE; Tam H; Refael G; Rogers JL; Cross MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036202. PubMed ID: 21230156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The link between coherence echoes and mode locking.
    Eydam S; Wolfrum M
    Chaos; 2019 Oct; 29(10):103114. PubMed ID: 31675832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlated disorder in the Kuramoto model: Effects on phase coherence, finite-size scaling, and dynamic fluctuations.
    Hong H; O'Keeffe KP; Strogatz SH
    Chaos; 2016 Oct; 26(10):103105. PubMed ID: 27802683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approximate solution for frequency synchronization in a finite-size Kuramoto model.
    Wang C; Rubido N; Grebogi C; Baptista MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062808. PubMed ID: 26764745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The asymptotic behavior of the order parameter for the infinite-N Kuramoto model.
    Mirollo RE
    Chaos; 2012 Dec; 22(4):043118. PubMed ID: 23278053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kuramoto dynamics in Hamiltonian systems.
    Witthaut D; Timme M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032917. PubMed ID: 25314514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite-time and finite-size scaling of the Kuramoto oscillators.
    Lee MJ; Yi SD; Kim BJ
    Phys Rev Lett; 2014 Feb; 112(7):074102. PubMed ID: 24579603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Approximate solution to the stochastic Kuramoto model.
    Sonnenschein B; Schimansky-Geier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052111. PubMed ID: 24329218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mean-field behavior in coupled oscillators with attractive and repulsive interactions.
    Hong H; Strogatz SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056210. PubMed ID: 23004846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partial inertia induces additional phase transition in the majority vote model.
    Harunari PE; de Oliveira MM; Fiore CE
    Phys Rev E; 2017 Oct; 96(4-1):042305. PubMed ID: 29347484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local synchronization in complex networks of coupled oscillators.
    Stout J; Whiteway M; Ott E; Girvan M; Antonsen TM
    Chaos; 2011 Jun; 21(2):025109. PubMed ID: 21721787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.