These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27415295)

  • 1. Hydrodynamics with spin in bacterial suspensions.
    Belovs M; Cēbers A
    Phys Rev E; 2016 Jun; 93(6):062404. PubMed ID: 27415295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition to bound states for bacteria swimming near surfaces.
    Das D; Lauga E
    Phys Rev E; 2019 Oct; 100(4-1):043117. PubMed ID: 31770991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid mechanics of swimming bacteria with multiple flagella.
    Kanehl P; Ishikawa T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042704. PubMed ID: 24827275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coexistence of tight and loose bundled states in a model of bacterial flagellar dynamics.
    Janssen PJ; Graham MD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011910. PubMed ID: 21867216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trapping and scattering of a multiflagellated bacterium by a hard surface.
    Petroff AP; McDonough S
    Phys Rev E; 2024 Mar; 109(3-1):034403. PubMed ID: 38632722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autonomously responsive pumping by a bacterial flagellar forest: A mean-field approach.
    Martindale JD; Fu HC
    Phys Rev E; 2017 Sep; 96(3-1):033107. PubMed ID: 29346873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast-moving bacteria self-organize into active two-dimensional crystals of rotating cells.
    Petroff AP; Wu XL; Libchaber A
    Phys Rev Lett; 2015 Apr; 114(15):158102. PubMed ID: 25933342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluid-mechanical interaction of flexible bacterial flagella by the immersed boundary method.
    Lim S; Peskin CS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036307. PubMed ID: 22587180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flagella bending affects macroscopic properties of bacterial suspensions.
    Potomkin M; Tournus M; Berlyand LV; Aranson IS
    J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28566507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observed frequency-independent torque in flagellar bacterial motors optimizes space exploration.
    Di Salvo ME; Condat CA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061907. PubMed ID: 23367976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell orientation of swimming bacteria: from theoretical simulation to experimental evaluation.
    Ping L
    Sci China Life Sci; 2012 Mar; 55(3):202-9. PubMed ID: 22527516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propulsion by passive filaments and active flagella near boundaries.
    Evans AA; Lauga E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041915. PubMed ID: 21230321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow properties and hydrodynamic interactions of rigid spherical microswimmers.
    Adhyapak TC; Jabbari-Farouji S
    Phys Rev E; 2017 Nov; 96(5-1):052608. PubMed ID: 29347781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of bacterial flagellar bundling.
    Flores H; Lobaton E; Méndez-Diez S; Tlupova S; Cortez R
    Bull Math Biol; 2005 Jan; 67(1):137-68. PubMed ID: 15691543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thrust and Power Output of the Bacterial Flagellar Motor: A Micromagnetic Tweezers Approach.
    Pierce CJ; Osborne E; Mumper E; Lower BH; Lower SK; Sooryakumar R
    Biophys J; 2019 Oct; 117(7):1250-1257. PubMed ID: 31540710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesoscopic modeling of bacterial flagellar microhydrodynamics.
    Gebremichael Y; Ayton GS; Voth GA
    Biophys J; 2006 Nov; 91(10):3640-52. PubMed ID: 16935949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling the mechanics and hydrodynamics of swimming E. coli.
    Hu J; Yang M; Gompper G; Winkler RG
    Soft Matter; 2015 Oct; 11(40):7867-76. PubMed ID: 26256240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zipping and entanglement in flagellar bundle of E. coli: Role of motile cell body.
    Adhyapak TC; Stark H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):052701. PubMed ID: 26651717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluctuating hydrodynamics and microrheology of a dilute suspension of swimming bacteria.
    Lau AW; Lubensky TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011917. PubMed ID: 19658739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collective Motion of Microorganisms in a Viscoelastic Fluid.
    Li G; Ardekani AM
    Phys Rev Lett; 2016 Sep; 117(11):118001. PubMed ID: 27661719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.