These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 27415300)
21. Selection Maintains Apparently Degenerate Metabolic Pathways due to Tradeoffs in Using Methylamine for Carbon versus Nitrogen. Nayak DD; Agashe D; Lee MC; Marx CJ Curr Biol; 2016 Jun; 26(11):1416-26. PubMed ID: 27212407 [TBL] [Abstract][Full Text] [Related]
22. Metabolic network analysis of perfused livers under fed and fasted states: incorporating thermodynamic and futile-cycle-associated regulatory constraints. Orman MA; Androulakis IP; Berthiaume F; Ierapetritou MG J Theor Biol; 2012 Jan; 293():101-10. PubMed ID: 22037644 [TBL] [Abstract][Full Text] [Related]
23. Computational approaches to the topology, stability and dynamics of metabolic networks. Steuer R Phytochemistry; 2007; 68(16-18):2139-51. PubMed ID: 17574639 [TBL] [Abstract][Full Text] [Related]
24. Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations. Costa RS; Machado D; Rocha I; Ferreira EC Biosystems; 2010 May; 100(2):150-7. PubMed ID: 20226228 [TBL] [Abstract][Full Text] [Related]
25. Thioesterases for ethylmalonyl-CoA pathway derived dicarboxylic acid production in Methylobacterium extorquens AM1. Sonntag F; Buchhaupt M; Schrader J Appl Microbiol Biotechnol; 2014 May; 98(10):4533-44. PubMed ID: 24419796 [TBL] [Abstract][Full Text] [Related]
26. Dynamic optimization of metabolic networks coupled with gene expression. Waldherr S; Oyarzún DA; Bockmayr A J Theor Biol; 2015 Jan; 365():469-85. PubMed ID: 25451533 [TBL] [Abstract][Full Text] [Related]
27. Measurement of respiration rates of Methylobacterium extorquens AM1 cultures by use of a phosphorescence-based sensor. Strovas TJ; Dragavon JM; Hankins TJ; Callis JB; Burgess LW; Lidstrom ME Appl Environ Microbiol; 2006 Feb; 72(2):1692-5. PubMed ID: 16461730 [TBL] [Abstract][Full Text] [Related]
28. Optimal metabolic regulation using a constraint-based model. Riehl WJ; Segrè D Genome Inform; 2008; 20():159-70. PubMed ID: 19425131 [TBL] [Abstract][Full Text] [Related]
29. Transient and sustained elementary flux mode networks on a catalytic string-based chemical evolution model. Pereira JA Biosystems; 2014 Aug; 122():38-54. PubMed ID: 24971802 [TBL] [Abstract][Full Text] [Related]
30. Optimization-driven identification of genetic perturbations accelerates the convergence of model parameters in ensemble modeling of metabolic networks. Zomorrodi AR; Lafontaine Rivera JG; Liao JC; Maranas CD Biotechnol J; 2013 Sep; 8(9):1090-104. PubMed ID: 23450699 [TBL] [Abstract][Full Text] [Related]
32. Landscape topography determines global stability and robustness of a metabolic network. Li C; Wang E; Wang J ACS Synth Biol; 2012 Jun; 1(6):229-39. PubMed ID: 23651205 [TBL] [Abstract][Full Text] [Related]
33. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters. Moisset P; Vaisman D; Cintolesi A; Urrutia J; Rapaport I; Andrews BA; Asenjo JA Biotechnol Bioeng; 2012 Sep; 109(9):2325-39. PubMed ID: 22447363 [TBL] [Abstract][Full Text] [Related]
34. Metabolomics assisted metabolic network modeling and network wide analysis of metabolites in microbiology. Wang J; Wang C; Liu H; Qi H; Chen H; Wen J Crit Rev Biotechnol; 2018 Nov; 38(7):1106-1120. PubMed ID: 29683004 [TBL] [Abstract][Full Text] [Related]
35. A 9-pool metabolic structured kinetic model describing days to seconds dynamics of growth and product formation by Penicillium chrysogenum. Tang W; Deshmukh AT; Haringa C; Wang G; van Gulik W; van Winden W; Reuss M; Heijnen JJ; Xia J; Chu J; Noorman HJ Biotechnol Bioeng; 2017 Aug; 114(8):1733-1743. PubMed ID: 28322433 [TBL] [Abstract][Full Text] [Related]
36. Lanthanide-Dependent Regulation of Methanol Oxidation Systems in Methylobacterium extorquens AM1 and Their Contribution to Methanol Growth. Vu HN; Subuyuj GA; Vijayakumar S; Good NM; Martinez-Gomez NC; Skovran E J Bacteriol; 2016 Apr; 198(8):1250-9. PubMed ID: 26833413 [TBL] [Abstract][Full Text] [Related]
37. Structural analysis of metabolic networks based on flux centrality. Koschützki D; Junker BH; Schwender J; Schreiber F J Theor Biol; 2010 Aug; 265(3):261-9. PubMed ID: 20471988 [TBL] [Abstract][Full Text] [Related]
38. Metabolite profiling analysis of Methylobacterium extorquens AM1 by comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. Guo X; Lidstrom ME Biotechnol Bioeng; 2008 Mar; 99(4):929-40. PubMed ID: 17879968 [TBL] [Abstract][Full Text] [Related]
39. Rerouting of carbon flux in a glycogen mutant of cyanobacteria assessed via isotopically non-stationary Hendry JI; Prasannan C; Ma F; Möllers KB; Jaiswal D; Digmurti M; Allen DK; Frigaard NU; Dasgupta S; Wangikar PP Biotechnol Bioeng; 2017 Oct; 114(10):2298-2308. PubMed ID: 28600876 [TBL] [Abstract][Full Text] [Related]
40. Systematic construction of kinetic models from genome-scale metabolic networks. Stanford NJ; Lubitz T; Smallbone K; Klipp E; Mendes P; Liebermeister W PLoS One; 2013; 8(11):e79195. PubMed ID: 24324546 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]