These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27415358)

  • 1. Spectral-clustering approach to Lagrangian vortex detection.
    Hadjighasem A; Karrasch D; Teramoto H; Haller G
    Phys Rev E; 2016 Jun; 93(6):063107. PubMed ID: 27415358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Fourier approach to Lagrangian vortex detection.
    El Aouni A; Yahia H; Daoudi K; Minaoui K
    Chaos; 2019 Sep; 29(9):093106. PubMed ID: 31575118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral-Clustering of Lagrangian Trajectory Graphs: Application to Abdominal Aortic Aneurysms.
    Darwish A; Norouzi S; Kadem L
    Cardiovasc Eng Technol; 2022 Jun; 13(3):504-513. PubMed ID: 34845627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated vortex identification based on Lagrangian averaged vorticity deviation in analysis of blood flow in the atrium from phase contrast MRI.
    Yang K; Wu S; Ghista DN; Yang D; Wong KKL
    Comput Methods Programs Biomed; 2022 Apr; 216():106678. PubMed ID: 35144147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary clustering of Lagrangian trajectories in turbulent Rayleigh-Bénard convection flows.
    Schneide C; Vieweg PP; Schumacher J; Padberg-Gehle K
    Chaos; 2022 Jan; 32(1):013123. PubMed ID: 35105126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of individual coherent sets associated with flow trajectories using coherent structure coloring.
    Schlueter-Kuck KL; Dabiri JO
    Chaos; 2017 Sep; 27(9):091101. PubMed ID: 28964141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An extended transfer operator approach to identify separatrices in open flows.
    Lünsmann B; Kantz H
    Chaos; 2018 May; 28(5):053101. PubMed ID: 29857670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices.
    Huhn F; van Rees WM; Gazzola M; Rossinelli D; Haller G; Koumoutsakos P
    Chaos; 2015 Aug; 25(8):087405. PubMed ID: 26328576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Level set formulation of two-dimensional Lagrangian vortex detection methods.
    Hadjighasem A; Haller G
    Chaos; 2016 Oct; 26(10):103102. PubMed ID: 27802672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lagrangian coherent sets in turbulent Rayleigh-Bénard convection.
    Schneide C; Stahn M; Pandey A; Junge O; Koltai P; Padberg-Gehle K; Schumacher J
    Phys Rev E; 2019 Nov; 100(5-1):053103. PubMed ID: 31869930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Point-vortex model for Lagrangian intermittency in turbulence.
    Rast MP; Pinton JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046314. PubMed ID: 19518340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracking vortices in superconductors: Extracting singularities from a discretized complex scalar field evolving in time.
    Phillips CL; Guo H; Peterka T; Karpeyev D; Glatz A
    Phys Rev E; 2016 Feb; 93(2):023305. PubMed ID: 26986437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherent vortex extraction in 3D turbulent flows using orthogonal wavelets.
    Farge M; Pellegrino G; Schneider K
    Phys Rev Lett; 2001 Jul; 87(5):054501. PubMed ID: 11497774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lagrangian scale of particle dispersion in turbulence.
    Xia H; Francois N; Punzmann H; Shats M
    Nat Commun; 2013; 4():2013. PubMed ID: 23771051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vortex statistics from Eulerian and Lagrangian time series.
    Pasquero C; Provenzale A; Weiss JB
    Phys Rev Lett; 2002 Dec; 89(28 Pt 1):284501. PubMed ID: 12513153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lagrangian coherent structures separate dynamically distinct regions in fluid flows.
    Kelley DH; Allshouse MR; Ouellette NT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013017. PubMed ID: 23944559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lagrangian particle statistics in turbulent flows from a simple vortex model.
    Wilczek M; Jenko F; Friedrich R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056301. PubMed ID: 18643155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propagation of an optical vortex carried by a partially coherent Laguerre-Gaussian beam in turbulent ocean.
    Cheng M; Guo L; Li J; Huang Q; Cheng Q; Zhang D
    Appl Opt; 2016 Jun; 55(17):4642-8. PubMed ID: 27409021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clustering criterion for inertial particles in two-dimensional time-periodic and three-dimensional steady flows.
    Sapsis T; Haller G
    Chaos; 2010 Mar; 20(1):017515. PubMed ID: 20370305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the flow separation in the wake of a fixed and a rotating cylinder.
    Miron P; Vétel J; Garon A
    Chaos; 2015 Aug; 25(8):087402. PubMed ID: 26328573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.