These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 27415441)

  • 1. Linkage Mapping of Stem Saccharification Digestibility in Rice.
    Liu B; Gómez LD; Hua C; Sun L; Ali I; Huang L; Yu C; Simister R; Steele-King C; Gan Y; McQueen-Mason SJ
    PLoS One; 2016; 11(7):e0159117. PubMed ID: 27415441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association mapping identifies quantitative trait loci (QTL) for digestibility in rice straw.
    Nguyen DT; Gomez LD; Harper A; Halpin C; Waugh R; Simister R; Whitehead C; Oakey H; Nguyen HT; Nguyen TV; Duong TX; McQueen-Mason SJ
    Biotechnol Biofuels; 2020; 13():165. PubMed ID: 33062051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Range of cell-wall alterations enhance saccharification in Brachypodium distachyon mutants.
    Marriott PE; Sibout R; Lapierre C; Fangel JU; Willats WG; Hofte H; Gómez LD; McQueen-Mason SJ
    Proc Natl Acad Sci U S A; 2014 Oct; 111(40):14601-6. PubMed ID: 25246540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping and candidate genes associated with saccharification yield in sorghum.
    Wang YH; Acharya A; Burrell AM; Klein RR; Klein PE; Hasenstein KH
    Genome; 2013 Nov; 56(11):659-65. PubMed ID: 24299105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening of rice mutants with improved saccharification efficiency results in the identification of CONSTITUTIVE PHOTOMORPHOGENIC 1 and GOLD HULL AND INTERNODE 1.
    Hirano K; Masuda R; Takase W; Morinaka Y; Kawamura M; Takeuchi Y; Takagi H; Yaegashi H; Natsume S; Terauchi R; Kotake T; Matsushita Y; Sazuka T
    Planta; 2017 Jul; 246(1):61-74. PubMed ID: 28357539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic loci simultaneously controlling lignin monomers and biomass digestibility of rice straw.
    Hu Z; Zhang G; Muhammad A; Samad RA; Wang Y; Walton JD; He Y; Peng L; Wang L
    Sci Rep; 2018 Feb; 8(1):3636. PubMed ID: 29483532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection.
    Rayaprolu L; Selvanayagam S; Rao DM; Gupta R; Das RR; Rathore A; Gandham P; Kiranmayee KNSU; Deshpande SP; Are AK
    Protein Pept Lett; 2021; 28(8):909-928. PubMed ID: 33588716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production.
    Rahnama N; Foo HL; Abdul Rahman NA; Ariff A; Md Shah UK
    BMC Biotechnol; 2014 Dec; 14():103. PubMed ID: 25496491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple effects of swelling by sodium bicarbonate after delignification on enzymatic saccharification of rice straw.
    Kahar P; Taku K; Tanaka S
    J Biosci Bioeng; 2013 Dec; 116(6):725-33. PubMed ID: 23830033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethanol production from Rice (Oryza sativa) straw by simultaneous saccharification and cofermentation.
    Goel A; Wati L
    Indian J Exp Biol; 2016 Aug; 54(8):525-9. PubMed ID: 28577514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants.
    Li F; Zhang M; Guo K; Hu Z; Zhang R; Feng Y; Yi X; Zou W; Wang L; Wu C; Tian J; Lu T; Xie G; Peng L
    Plant Biotechnol J; 2015 May; 13(4):514-25. PubMed ID: 25418842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide association study for lignocellulosic compounds and fermentable sugar in rice straw.
    Panahabadi R; Ahmadikhah A; McKee LS; Ingvarsson PK; Farrokhi N
    Plant Genome; 2022 Mar; 15(1):e20174. PubMed ID: 34806838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes.
    Teeravivattanakit T; Baramee S; Phitsuwan P; Sornyotha S; Waeonukul R; Pason P; Tachaapaikoon C; Poomputsa K; Kosugi A; Sakka K; Ratanakhanokchai K
    Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QTL mapping for resistance to and tolerance for the rice root-knot nematode, Meloidogyne graminicola.
    Galeng-Lawilao J; Kumar A; De Waele D
    BMC Genet; 2018 Aug; 19(1):53. PubMed ID: 30081817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QTL analysis of novel genomic regions associated with yield and yield related traits in new plant type based recombinant inbred lines of rice (Oryza sativa L.).
    Marathi B; Guleria S; Mohapatra T; Parsad R; Mariappan N; Kurungara VK; Atwal SS; Prabhu KV; Singh NK; Singh AK
    BMC Plant Biol; 2012 Aug; 12():137. PubMed ID: 22876968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silica distinctively affects cell wall features and lignocellulosic saccharification with large enhancement on biomass production in rice.
    Zhang J; Zou W; Li Y; Feng Y; Zhang H; Wu Z; Tu Y; Wang Y; Cai X; Peng L
    Plant Sci; 2015 Oct; 239():84-91. PubMed ID: 26398793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Saccharification and Fermentation of Rice Straw by Reducing the Concentration of Phenolic Compounds Using an Immobilized Enzyme Cocktail.
    Kumar V; Patel SKS; Gupta RK; Otari SV; Gao H; Lee JK; Zhang L
    Biotechnol J; 2019 Jun; 14(6):e1800468. PubMed ID: 30927488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comprehensive review on genetic modification of plant cell wall for improved saccharification efficiency.
    Mishra A; Mishra TK; Nanda S; Mohanty MK; Dash M
    Mol Biol Rep; 2023 Dec; 50(12):10509-10524. PubMed ID: 37921982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice.
    Li F; Xie G; Huang J; Zhang R; Li Y; Zhang M; Wang Y; Li A; Li X; Xia T; Qu C; Hu F; Ragauskas AJ; Peng L
    Plant Biotechnol J; 2017 Sep; 15(9):1093-1104. PubMed ID: 28117552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network.
    Singh R; Singh Y; Xalaxo S; Verulkar S; Yadav N; Singh S; Singh N; Prasad KSN; Kondayya K; Rao PVR; Rani MG; Anuradha T; Suraynarayana Y; Sharma PC; Krishnamurthy SL; Sharma SK; Dwivedi JL; Singh AK; Singh PK; Nilanjay ; Singh NK; Kumar R; Chetia SK; Ahmad T; Rai M; Perraju P; Pande A; Singh DN; Mandal NP; Reddy JN; Singh ON; Katara JL; Marandi B; Swain P; Sarkar RK; Singh DP; Mohapatra T; Padmawathi G; Ram T; Kathiresan RM; Paramsivam K; Nadarajan S; Thirumeni S; Nagarajan M; Singh AK; Vikram P; Kumar A; Septiningshih E; Singh US; Ismail AM; Mackill D; Singh NK
    Plant Sci; 2016 Jan; 242():278-287. PubMed ID: 26566845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.