These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 27416103)
1. Tailoring Vacancies Far Beyond Intrinsic Levels Changes the Carrier Type and Optical Response in Monolayer MoSe2-x Crystals. Mahjouri-Samani M; Liang L; Oyedele A; Kim YS; Tian M; Cross N; Wang K; Lin MW; Boulesbaa A; Rouleau CM; Puretzky AA; Xiao K; Yoon M; Eres G; Duscher G; Sumpter BG; Geohegan DB Nano Lett; 2016 Aug; 16(8):5213-20. PubMed ID: 27416103 [TBL] [Abstract][Full Text] [Related]
2. Defect-Mediated Alloying of Monolayer Transition-Metal Dichalcogenides. Taghinejad H; Rehn DA; Muccianti C; Eftekhar AA; Tian M; Fan T; Zhang X; Meng Y; Chen Y; Nguyen TV; Shi SF; Ajayan PM; Schaibley J; Reed EJ; Adibi A ACS Nano; 2018 Dec; 12(12):12795-12804. PubMed ID: 30433762 [TBL] [Abstract][Full Text] [Related]
3. Effects of Vacancy Defects on the Electronic and Optical Properties of Monolayer PbSe. Ekuma CE J Phys Chem Lett; 2018 Jul; 9(13):3680-3685. PubMed ID: 29921127 [TBL] [Abstract][Full Text] [Related]
4. Defect evolution behaviors from single sulfur point vacancies to line vacancies in monolayer molybdenum disulfide. Gao C; Yang X; Jiang M; Chen L; Chen Z; Singh CV Phys Chem Chem Phys; 2021 Sep; 23(35):19525-19536. PubMed ID: 34524293 [TBL] [Abstract][Full Text] [Related]
5. Effect of Metal Doping and Vacancies on the Thermal Conductivity of Monolayer Molybdenum Diselenide. Yarali M; Brahmi H; Yan Z; Li X; Xie L; Chen S; Kumar S; Yoon M; Xiao K; Mavrokefalos A ACS Appl Mater Interfaces; 2018 Feb; 10(5):4921-4928. PubMed ID: 29322775 [TBL] [Abstract][Full Text] [Related]
6. Laser Annealing Improves the Photoelectrochemical Activity of Ultrathin MoSe Wang L; Schmid M; Nilsson ZN; Tahir M; Chen H; Sambur JB ACS Appl Mater Interfaces; 2019 May; 11(21):19207-19217. PubMed ID: 31070890 [TBL] [Abstract][Full Text] [Related]
7. Hidden Vacancy Benefit in Monolayer 2D Semiconductors. Zhang X; Liao Q; Kang Z; Liu B; Liu X; Ou Y; Xiao J; Du J; Liu Y; Gao L; Gu L; Hong M; Yu H; Zhang Z; Duan X; Zhang Y Adv Mater; 2021 Feb; 33(7):e2007051. PubMed ID: 33448081 [TBL] [Abstract][Full Text] [Related]
8. Influence of tungsten doping on nonradiative electron-hole recombination in monolayer MoSe Yang Y; Tokina MV; Fang WH; Long R; Prezhdo OV J Chem Phys; 2020 Oct; 153(15):154701. PubMed ID: 33092357 [TBL] [Abstract][Full Text] [Related]
9. Tailoring the optical properties of atomically-thin WS Ma L; Tan Y; Ghorbani-Asl M; Boettger R; Kretschmer S; Zhou S; Huang Z; Krasheninnikov AV; Chen F Nanoscale; 2017 Aug; 9(31):11027-11034. PubMed ID: 28660978 [TBL] [Abstract][Full Text] [Related]
10. Microsecond Valley Lifetime of Defect-Bound Excitons in Monolayer WSe_{2}. Moody G; Tran K; Lu X; Autry T; Fraser JM; Mirin RP; Yang L; Li X; Silverman KL Phys Rev Lett; 2018 Aug; 121(5):057403. PubMed ID: 30118275 [TBL] [Abstract][Full Text] [Related]
11. Structure, Stability, and Kinetics of Vacancy Defects in Monolayer PtSe Gao J; Cheng Y; Tian T; Hu X; Zeng K; Zhang G; Zhang YW ACS Omega; 2017 Dec; 2(12):8640-8648. PubMed ID: 31457396 [TBL] [Abstract][Full Text] [Related]
13. Vacancy impacts on electronic and mechanical properties of MX2 (M = Mo, W and X = S, Se) monolayers. Kazemi SA; Imani Yengejeh S; Ogunkunle SA; Zhang L; Wen W; Wee-Chung Liew A; Wang Y RSC Adv; 2023 Feb; 13(10):6498-6506. PubMed ID: 36845596 [TBL] [Abstract][Full Text] [Related]
14. Scalable Synthesis of Highly Crystalline MoSe Li Y; Zhang K; Wang F; Feng Y; Li Y; Han Y; Tang D; Zhang B ACS Appl Mater Interfaces; 2017 Oct; 9(41):36009-36016. PubMed ID: 28898042 [TBL] [Abstract][Full Text] [Related]
15. Quantification and Healing of Defects in Atomically Thin Molybdenum Disulfide: Beyond the Controlled Creation of Atomic Defects. Fujisawa K; Carvalho BR; Zhang T; Perea-López N; Lin Z; Carozo V; Ramos SLLM; Kahn E; Bolotsky A; Liu H; Elías AL; Terrones M ACS Nano; 2021 Jun; 15(6):9658-9669. PubMed ID: 33754710 [TBL] [Abstract][Full Text] [Related]
16. Photoluminescence Enhancement and Structure Repairing of Monolayer MoSe2 by Hydrohalic Acid Treatment. Han HV; Lu AY; Lu LS; Huang JK; Li H; Hsu CL; Lin YC; Chiu MH; Suenaga K; Chu CW; Kuo HC; Chang WH; Li LJ; Shi Y ACS Nano; 2016 Jan; 10(1):1454-61. PubMed ID: 26716765 [TBL] [Abstract][Full Text] [Related]
17. Ultrafast nucleation and growth of high-quality monolayer MoSe Wang W; Shu H; Zhou D; Wang J; Chen X Nanotechnology; 2020 Aug; 31(33):335601. PubMed ID: 32365342 [TBL] [Abstract][Full Text] [Related]
18. Defect Passivation and Photoluminescence Enhancement of Monolayer MoS Wang W; Shu H; Wang J; Cheng Y; Liang P; Chen X ACS Appl Mater Interfaces; 2020 Feb; 12(8):9563-9571. PubMed ID: 32009383 [TBL] [Abstract][Full Text] [Related]
19. Ohmic Contact Fabrication Using a Focused-ion Beam Technique and Electrical Characterization for Layer Semiconductor Nanostructures. Chen RS; Tang CC; Shen WC; Huang YS J Vis Exp; 2015 Dec; (106):e53200. PubMed ID: 26710105 [TBL] [Abstract][Full Text] [Related]
20. Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. Chow PK; Jacobs-Gedrim RB; Gao J; Lu TM; Yu B; Terrones H; Koratkar N ACS Nano; 2015 Feb; 9(2):1520-7. PubMed ID: 25603228 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]