These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 27416288)

  • 1. Hydrothermally synthesized Copper Oxide (CuO) superstructures for ammonia sensing.
    Bhuvaneshwari S; Gopalakrishnan N
    J Colloid Interface Sci; 2016 Oct; 480():76-84. PubMed ID: 27416288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous CuO superstructure: precursor-mediated fabrication, gas sensing and photocatalytic properties.
    Xu H; Zhu G; Zheng D; Xi C; Xu X; Shen X
    J Colloid Interface Sci; 2012 Oct; 383(1):75-81. PubMed ID: 22795948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring the structure of metal oxide nanostructures towards enhanced sensing properties for environmental applications.
    Yang M; He J
    J Colloid Interface Sci; 2012 Feb; 368(1):41-8. PubMed ID: 22024372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CuO nanostructures as quartz crystal microbalance sensing layers for detection of trace hydrogen cyanide gas.
    Yang M; He J; Hu X; Yan C; Cheng Z
    Environ Sci Technol; 2011 Jul; 45(14):6088-94. PubMed ID: 21699255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrothermal synthesis of CuO micro-/nanostructures and their applications in the oxidative degradation of methylene blue and non-enzymatic sensing of glucose/H2O2.
    Prathap MU; Kaur B; Srivastava R
    J Colloid Interface Sci; 2012 Mar; 370(1):144-54. PubMed ID: 22284573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CO gas sensors based on p-type CuO nanotubes and CuO nanocubes: Morphology and surface structure effects on the sensing performance.
    Hou L; Zhang C; Li L; Du C; Li X; Kang XF; Chen W
    Talanta; 2018 Oct; 188():41-49. PubMed ID: 30029395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine tuning of the morphology of copper oxide nanostructures and their application in ambient degradation of methylene blue.
    Yang M; He J
    J Colloid Interface Sci; 2011 Mar; 355(1):15-22. PubMed ID: 21186032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel 3D hierarchical cotton-candy-like CuO: surfactant-free solvothermal synthesis and application in As(III) removal.
    Yu XY; Xu RX; Gao C; Luo T; Jia Y; Liu JH; Huang XJ
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):1954-62. PubMed ID: 22458408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CuO codoped ZnO based nanostructured materials for sensitive chemical sensor applications.
    Rahman MM; Jamal A; Khan SB; Faisal M
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1346-51. PubMed ID: 21443253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant-free Synthesis of CuO with Controllable Morphologies and Enhanced Photocatalytic Property.
    Wang X; Yang J; Shi L; Gao M
    Nanoscale Res Lett; 2016 Dec; 11(1):125. PubMed ID: 26935305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-step self-assembled synthesis of CuO with tunable hierarchical structures and their electrocatalytic properties for nitrite oxidation in aqueous media.
    Zhao Y; Song X; Yin Z; Song Q
    J Colloid Interface Sci; 2013 Apr; 396():29-38. PubMed ID: 23428073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Room-temperature ammonia sensor based on cationic surfactant-assisted nanocrystalline CuO.
    Bedi RK; Singh I
    ACS Appl Mater Interfaces; 2010 May; 2(5):1361-8. PubMed ID: 20402466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile fabrication and enhanced sensing properties of hierarchically porous CuO architectures.
    Zhu G; Xu H; Xiao Y; Liu Y; Yuan A; Shen X
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):744-51. PubMed ID: 22257081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flower-Like CuO/ZnO Hybrid Hierarchical Nanostructures Grown on Copper Substrate: Glycothermal Synthesis, Characterization, Hydrophobic and Anticorrosion Properties.
    Beshkar F; Khojasteh H; Salavati-Niasari M
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile control of room temperature nitrogen dioxide gas selectivity induced by copper oxide nanoplatelets.
    Oosthuizen DN; Korditis I; Swart HC; Motaung DE
    J Colloid Interface Sci; 2020 Feb; 560():755-768. PubMed ID: 31706648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A green strategy to prepare metal oxide superstructure from metal-organic frameworks.
    Song Y; Li X; Wei C; Fu J; Xu F; Tan H; Tang J; Wang L
    Sci Rep; 2015 Feb; 5():8401. PubMed ID: 25669731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly sensitive tin oxide hollow microspheres and nanosheets to ethanol gas prepared by hydrothermal method.
    Firooz AA; Mahjoub AR; Khodadadi AA; Shahrjerdi A
    J Nanosci Nanotechnol; 2010 Sep; 10(9):6049-55. PubMed ID: 21133147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of p-p heterojunctions based on CuO decorated WS
    Luo H; Shi J; Liu C; Chen X; Lv W; Zhou Y; Zeng M; Yang J; Wei H; Zhou Z; Su Y; Hu N; Yang Z
    Nanotechnology; 2021 Aug; 32(44):. PubMed ID: 34315147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance, room-temperature, and no-humidity-impact ammonia sensor based on heterogeneous nickel oxide and zinc oxide nanocrystals.
    Wang J; Yang P; Wei X
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3816-24. PubMed ID: 25602842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of hierarchical three-dimensional copper oxide nanostructures through a biomineralization-inspired approach.
    Fei X; Shao Z; Chen X
    Nanoscale; 2013 Sep; 5(17):7991-7. PubMed ID: 23863944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.