These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 27416513)

  • 21. Mechanisms and kinetics of granulated sewage sludge combustion.
    Kijo-Kleczkowska A; Środa K; Kosowska-Golachowska M; Musiał T; Wolski K
    Waste Manag; 2015 Dec; 46():459-71. PubMed ID: 26306758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermogravimetric study of the combustion of Tetraselmis suecica microalgae and its blend with a Victorian brown coal in O2/N2 and O2/CO2 atmospheres.
    Tahmasebi A; Kassim MA; Yu J; Bhattacharya S
    Bioresour Technol; 2013 Dec; 150():15-27. PubMed ID: 24140946
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combustion Characteristics, Kinetics, and Thermodynamics of Pine Wood Through Thermogravimetric Analysis.
    Xu X; Pan R; Chen R
    Appl Biochem Biotechnol; 2021 May; 193(5):1427-1446. PubMed ID: 33417234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A kinetic study on the catalysis of KCl, K
    Deng S; Wang X; Zhang J; Liu Z; Mikulčić H; Vujanović M; Tan H; Duić N
    J Environ Manage; 2018 Jul; 218():50-58. PubMed ID: 29665486
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetics, thermodynamics, gas evolution and empirical optimization of (co-)combustion performances of spent mushroom substrate and textile dyeing sludge.
    Huang J; Liu J; Kuo J; Xie W; Zhang X; Chang K; Buyukada M; Evrendilek F
    Bioresour Technol; 2019 May; 280():313-324. PubMed ID: 30780091
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Management of sewage sludge by composting using fermented water hyacinth.
    Tello-Andrade AF; Jiménez-Moleón MC; Sánchez-Galván G
    Environ Sci Pollut Res Int; 2015 Oct; 22(19):14781-92. PubMed ID: 25989858
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Co-combustion of different sewage sludge and coal: a non-isothermal thermogravimetric kinetic analysis.
    Otero M; Calvo LF; Gil MV; García AI; Morán A
    Bioresour Technol; 2008 Sep; 99(14):6311-9. PubMed ID: 18255288
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modelling and kinetics studies of a corn-rape blend combustion in an oxy-fuel atmosphere.
    López R; Fernández C; Martínez O; Sánchez ME
    Bioresour Technol; 2015 May; 183():153-62. PubMed ID: 25731924
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combustion characteristics and kinetic analysis of oil sludge with CaO additive.
    Liu C; Gong Z; Zhang H; Wang Z; Chu Z; Liu L; Li X; Guo Y; Zhang J; Li G; Zhang L; Wang H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(9):937-945. PubMed ID: 34347579
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of organic calcium compounds on combustion characteristics of rice husk, sewage sludge, and bituminous coal: thermogravimetric investigation.
    Zhang L; Duan F; Huang Y
    Bioresour Technol; 2015 Apr; 181():62-71. PubMed ID: 25638405
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal processing of sewage sludge by drying, pyrolysis, gasification and combustion.
    Stolarek P; Ledakowicz S
    Water Sci Technol; 2001; 44(10):333-9. PubMed ID: 11794675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pyrolysis kinetics and thermodynamic parameters of the hydrochars derived from co-hydrothermal carbonization of sawdust and sewage sludge using thermogravimetric analysis.
    Ma J; Luo H; Li Y; Liu Z; Li D; Gai C; Jiao W
    Bioresour Technol; 2019 Jun; 282():133-141. PubMed ID: 30852333
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermochemical decomposition of sewage sludge in CO2 and N2 atmosphere.
    Jindarom C; Meeyoo V; Rirksomboon T; Rangsunvigit P
    Chemosphere; 2007 Apr; 67(8):1477-84. PubMed ID: 17289108
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental research of sewage sludge with coal and biomass co-combustion, in pellet form.
    Kijo-Kleczkowska A; Środa K; Kosowska-Golachowska M; Musiał T; Wolski K
    Waste Manag; 2016 Jul; 53():165-81. PubMed ID: 27161507
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The thermal behaviour of the co-combustion between paper sludge and rice straw.
    Xie Z; Ma X
    Bioresour Technol; 2013 Oct; 146():611-618. PubMed ID: 23973983
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synergistic effect of hydrothermal co-carbonization of sewage sludge with fruit and agricultural wastes on hydrochar fuel quality and combustion behavior.
    He C; Zhang Z; Ge C; Liu W; Tang Y; Zhuang X; Qiu R
    Waste Manag; 2019 Dec; 100():171-181. PubMed ID: 31541922
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative evaluation of thermal oxidative decomposition for oil-plant residues via thermogravimetric analysis: Thermal conversion characteristics, kinetics, and thermodynamics.
    Chen J; Wang Y; Lang X; Ren X; Fan S
    Bioresour Technol; 2017 Nov; 243():37-46. PubMed ID: 28651137
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermogravimetric analysis of the combustion of microalgae and microalgae blended with waste in N2/O2 and CO2/O2 atmospheres.
    Tang Y; Ma X; Lai Z
    Bioresour Technol; 2011 Jan; 102(2):1879-85. PubMed ID: 20817514
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic parameters of red pepper waste as biomass to solid biofuel.
    Maia AAD; de Morais LC
    Bioresour Technol; 2016 Mar; 204():157-163. PubMed ID: 26773950
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conversion of biomass waste to solid fuel via hydrothermal co-carbonization of distillers grains and sewage sludge.
    Zhao J; Liu C; Hou T; Lei Z; Yuan T; Shimizu K; Zhang Z
    Bioresour Technol; 2022 Feb; 345():126545. PubMed ID: 34902485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.