BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 27416603)

  • 1. A P300-Based Threshold-Free Brain Switch and Its Application in Wheelchair Control.
    He S; Zhang R; Wang Q; Chen Y; Yang T; Feng Z; Zhang Y; Shao M; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):715-725. PubMed ID: 27416603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid BCI system combining P300 and SSVEP and its application to wheelchair control.
    Li Y; Pan J; Wang F; Yu Z
    IEEE Trans Biomed Eng; 2013 Nov; 60(11):3156-66. PubMed ID: 23799679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair.
    Long J; Li Y; Wang H; Yu T; Pan J; Li F
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):720-9. PubMed ID: 22692936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of a Wheelchair in an Indoor Environment Based on a Brain-Computer Interface and Automated Navigation.
    Zhang R; Li Y; Yan Y; Zhang H; Wu S; Yu T; Gu Z
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):128-39. PubMed ID: 26054072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrimination between control and idle states in asynchronous SSVEP-based brain switches: a pseudo-key-based approach.
    Pan J; Li Y; Zhang R; Gu Z; Li F
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):435-43. PubMed ID: 23673460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Paced Operation of a Wheelchair Based on a Hybrid Brain-Computer Interface Combining Motor Imagery and P300 Potential.
    Yu Y; Zhou Z; Liu Y; Jiang J; Yin E; Zhang N; Wang Z; Liu Y; Wu X; Hu D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2516-2526. PubMed ID: 29220327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of a simulated wheelchair based on a hybrid brain computer interface.
    Long J; Li Y; Wang H; Yu T; Pan J
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6727-30. PubMed ID: 23367473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of a nursing bed based on a hybrid brain-computer interface.
    Nengneng Peng ; Rui Zhang ; Haihua Zeng ; Fei Wang ; Kai Li ; Yuanqing Li ; Xiaobin Zhuang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1556-1559. PubMed ID: 28268624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An EOG-Based Human-Machine Interface to Control a Smart Home Environment for Patients With Severe Spinal Cord Injuries.
    Zhang R; He S; Yang X; Wang X; Li K; Huang Q; Yu Z; Zhang X; Tang D; Li Y
    IEEE Trans Biomed Eng; 2019 Jan; 66(1):89-100. PubMed ID: 29993413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HMM based automated wheelchair navigation using EOG traces in EEG.
    Aziz F; Arof H; Mokhtar N; Mubin M
    J Neural Eng; 2014 Oct; 11(5):056018. PubMed ID: 25188730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-calibration algorithm in an asynchronous P300-based brain-computer interface.
    Schettini F; Aloise F; Aricò P; Salinari S; Mattia D; Cincotti F
    J Neural Eng; 2014 Jun; 11(3):035004. PubMed ID: 24838347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wireless Stimulus-on-Device Design for Novel P300 Hybrid Brain-Computer Interface Applications.
    Kuo CH; Chen HH; Chou HC; Chen PN; Kuo YC
    Comput Intell Neurosci; 2018; 2018():2301804. PubMed ID: 30111993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Design and implementation of controlling smart car systems using P300 brain-computer interface].
    Wang J; Yang C; Hu B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Apr; 30(2):223-8. PubMed ID: 23858737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A P300-based Brain Computer Interface Using Stereo-electroencephalography Signals.
    Huang W; Yu T; Xiao J; Guo Q; Li Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3062-3066. PubMed ID: 31946534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Single-Channel EOG-Based Speller.
    He S; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):1978-1987. PubMed ID: 28641264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An EOG-Based Human-Machine Interface for Wheelchair Control.
    Huang Q; He S; Wang Q; Gu Z; Peng N; Li K; Zhang Y; Shao M; Li Y
    IEEE Trans Biomed Eng; 2018 Sep; 65(9):2023-2032. PubMed ID: 28767359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An EOG-based wheelchair robotic arm system for assisting patients with severe spinal cord injuries.
    Huang Q; Chen Y; Zhang Z; He S; Zhang R; Liu J; Zhang Y; Shao M; Li Y
    J Neural Eng; 2019 Apr; 16(2):026021. PubMed ID: 30620927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain-computer interface.
    Diez PF; Torres Müller SM; Mut VA; Laciar E; Avila E; Bastos-Filho TF; Sarcinelli-Filho M
    Med Eng Phys; 2013 Aug; 35(8):1155-64. PubMed ID: 23339894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asynchronous P300-based brain-computer interfaces: a computational approach with statistical models.
    Zhang H; Guan C; Wang C
    IEEE Trans Biomed Eng; 2008 Jun; 55(6):1754-63. PubMed ID: 18714840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards BCI-actuated smart wheelchair system.
    Tang J; Liu Y; Hu D; Zhou Z
    Biomed Eng Online; 2018 Aug; 17(1):111. PubMed ID: 30126416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.