These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 27416744)

  • 1. Effect of interlayer interactions on exciton luminescence in atomic-layered MoS2 crystals.
    Kim JG; Yun WS; Jo S; Lee J; Cho CH
    Sci Rep; 2016 Jul; 6():29813. PubMed ID: 27416744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Giant Stark splitting of an exciton in bilayer MoS
    Leisgang N; Shree S; Paradisanos I; Sponfeldner L; Robert C; Lagarde D; Balocchi A; Watanabe K; Taniguchi T; Marie X; Warburton RJ; Gerber IC; Urbaszek B
    Nat Nanotechnol; 2020 Nov; 15(11):901-907. PubMed ID: 32778806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical Tuning of Interlayer Exciton Gases in WSe
    Wang Z; Chiu YH; Honz K; Mak KF; Shan J
    Nano Lett; 2018 Jan; 18(1):137-143. PubMed ID: 29240440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective Chemical Modulation of Interlayer Excitons in Atomically Thin Heterostructures.
    Ji J; Delehey CM; Houpt DN; Heighway MK; Lee T; Choi JH
    Nano Lett; 2020 Apr; 20(4):2500-2506. PubMed ID: 32186880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interlayer excitons in bilayer MoS
    Niehues I; Blob A; Stiehm T; Michaelis de Vasconcellos S; Bratschitsch R
    Nanoscale; 2019 Jul; 11(27):12788-12792. PubMed ID: 31245801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum-Confined Stark Effect in a MoS
    Roch JG; Leisgang N; Froehlicher G; Makk P; Watanabe K; Taniguchi T; Schönenberger C; Warburton RJ
    Nano Lett; 2018 Feb; 18(2):1070-1074. PubMed ID: 29378141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On Valence-Band Splitting in Layered MoS2.
    Zhang Y; Li H; Wang H; Liu R; Zhang SL; Qiu ZJ
    ACS Nano; 2015 Aug; 9(8):8514-9. PubMed ID: 26222731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interlayer Excitons with Large Optical Amplitudes in Layered van der Waals Materials.
    Deilmann T; Thygesen KS
    Nano Lett; 2018 May; 18(5):2984-2989. PubMed ID: 29665688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoluminescence quenching and charge transfer in artificial heterostacks of monolayer transition metal dichalcogenides and few-layer black phosphorus.
    Yuan J; Najmaei S; Zhang Z; Zhang J; Lei S; M Ajayan P; Yakobson BI; Lou J
    ACS Nano; 2015 Jan; 9(1):555-63. PubMed ID: 25569715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Room temperature nanocavity laser with interlayer excitons in 2D heterostructures.
    Liu Y; Fang H; Rasmita A; Zhou Y; Li J; Yu T; Xiong Q; Zheludev N; Liu J; Gao W
    Sci Adv; 2019 Apr; 5(4):eaav4506. PubMed ID: 31032409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets.
    Zhao W; Ribeiro RM; Eda G
    Acc Chem Res; 2015 Jan; 48(1):91-9. PubMed ID: 25515381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitons in two-dimensional atomic layer materials from time-dependent density functional theory: mono-layer and bi-layer hexagonal boron nitride and transition-metal dichalcogenides.
    Suzuki Y; Watanabe K
    Phys Chem Chem Phys; 2020 Feb; 22(5):2908-2916. PubMed ID: 31950126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing interlayer excitons in a vertical van der Waals p-n junction using a scanning probe microscopy technique.
    Rahaman M; Wagner C; Mukherjee A; Lopez-Rivera A; Gemming S; Zahn DRT
    J Phys Condens Matter; 2019 Mar; 31(11):114001. PubMed ID: 30625449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectric screening of excitons and trions in single-layer MoS2.
    Lin Y; Ling X; Yu L; Huang S; Hsu AL; Lee YH; Kong J; Dresselhaus MS; Palacios T
    Nano Lett; 2014 Oct; 14(10):5569-76. PubMed ID: 25216267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge-Accumulation Effect in Transition Metal Dichalcogenide Heterobilayers.
    Ye T; Li J; Li D
    Small; 2019 Oct; 15(42):e1902424. PubMed ID: 31448529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Strain-Tunable Interlayer Excitons in MoS
    Cho C; Wong J; Taqieddin A; Biswas S; Aluru NR; Nam S; Atwater HA
    Nano Lett; 2021 May; 21(9):3956-3964. PubMed ID: 33914542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures.
    Chen H; Wen X; Zhang J; Wu T; Gong Y; Zhang X; Yuan J; Yi C; Lou J; Ajayan PM; Zhuang W; Zhang G; Zheng J
    Nat Commun; 2016 Aug; 7():12512. PubMed ID: 27539942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intervalley Scattering of Interlayer Excitons in a MoS
    Surrente A; Kłopotowski Ł; Zhang N; Baranowski M; Mitioglu AA; Ballottin MV; Christianen PCM; Dumcenco D; Kung YC; Maude DK; Kis A; Plochocka P
    Nano Lett; 2018 Jun; 18(6):3994-4000. PubMed ID: 29791166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunneling Photocurrent Assisted by Interlayer Excitons in Staggered van der Waals Hetero-Bilayers.
    Luong DH; Lee HS; Neupane GP; Roy S; Ghimire G; Lee JH; Vu QA; Lee YH
    Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28671724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.