These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 27416797)
1. Differential Laser-Induced Perturbation Spectroscopy for Analysis of Mixtures of the Fluorophores l-Phenylalanine, l-Tyrosine and l-Tryptophan Using a Fluorescence Probe. Oztekin EK; Hahn DW Photochem Photobiol; 2016 Sep; 92(5):658-66. PubMed ID: 27416797 [TBL] [Abstract][Full Text] [Related]
2. Differential laser-induced perturbation Raman spectroscopy: a comparison with Raman spectroscopy for analysis and classification of amino acids and dipeptides. Oztekin EK; Smith SE; Hahn DW J Biomed Opt; 2015 Apr; 20(4):047006. PubMed ID: 25905445 [TBL] [Abstract][Full Text] [Related]
3. [Simultaneous determination of tryptophan, tyrosine and phenylalanine in injection by derivative fluorescent PLS method]. Ding Y; Su Q; Wu Q Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Apr; 21(2):212-4. PubMed ID: 12947624 [TBL] [Abstract][Full Text] [Related]
4. Comparative evaluation of differential laser-induced perturbation spectroscopy as a technique to discriminate emerging skin pathology. Kozikowski RT; Smith SE; Lee JA; Castleman WL; Sorg BS; Hahn DW J Biomed Opt; 2012 Jun; 17(6):067002. PubMed ID: 22734780 [TBL] [Abstract][Full Text] [Related]
5. An Approach for In Situ Rapid Detection of Deep-Sea Aromatic Amino Acids Using Laser-Induced Fluorescence. Du R; Yang D; Jiang G; Song Y; Yin X Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32121409 [TBL] [Abstract][Full Text] [Related]
6. Aromatic amino acids in high selectivity bismuth(III) recognition. Ghatak SK; Dey D; Sen S; Sen K Analyst; 2013 Apr; 138(8):2308-14. PubMed ID: 23446647 [TBL] [Abstract][Full Text] [Related]
7. [Simultaneous resolution and determination of tyrosine, tryptophan and phenylalanine by alternating penalty trilinear decomposition algorithm coupled with 3D emission-excitation matrix fluorometry]. Xiao J; Ren FL; Song G; Liao L; Yu WF; Zeng T Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Oct; 27(10):2088-92. PubMed ID: 18306802 [TBL] [Abstract][Full Text] [Related]
8. Fast label-free identification of bacteria by synchronous fluorescence of amino acids. Shlosberg Y; Farber Y; Hasson S; Bulatov V; Schechter I Anal Bioanal Chem; 2021 Nov; 413(27):6857-6866. PubMed ID: 34491394 [TBL] [Abstract][Full Text] [Related]
9. Three aromatic amino acids in gastric juice as potential biomarkers for gastric malignancies. Deng K; Lin S; Zhou L; Geng Q; Li Y; Xu M; Na R Anal Chim Acta; 2011 May; 694(1-2):100-7. PubMed ID: 21565309 [TBL] [Abstract][Full Text] [Related]
10. Second-derivative spectroscopy of proteins. A method for the quantitative determination of aromatic amino acids in proteins. Balestrieri C; Colonna G; Giovane A; Irace G; Servillo L Eur J Biochem; 1978 Oct; 90(3):433-40. PubMed ID: 710441 [TBL] [Abstract][Full Text] [Related]
11. [Study of interaction of umbelliferone with three aromatic amino acids by fluorescence spectroscopy]. Jiang H; Zhu YW; Wang Y; He JB Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Aug; 33(8):2117-22. PubMed ID: 24159859 [TBL] [Abstract][Full Text] [Related]
12. Spectrofluorimetric study on fluorescence quenching of tyrosine and l-tryptophan by the aniracetam cognition enhancer drug: quenching mechanism using Stern-Volmer and double-log plots. Hassan SAE; Ahmed SAE; Helmy AH; Youssef NF Luminescence; 2020 Aug; 35(5):728-737. PubMed ID: 31994341 [TBL] [Abstract][Full Text] [Related]
13. Compact detector for proteins based on two-photon excitation of native fluorescence. Paul UP; Li L; Lee ML; Farnsworth PB Anal Chem; 2005 Jun; 77(11):3690-3. PubMed ID: 15924406 [TBL] [Abstract][Full Text] [Related]
14. Analysis of Tryptophan and Tyrosine in the Presence of Other Bioactive Molecules Using Generalized Rank Annihilation Method on Excitation-emission Fluorescence Spectroscopic Data Sets. Kumar K J Fluoresc; 2020 Jul; 30(4):787-792. PubMed ID: 32419036 [TBL] [Abstract][Full Text] [Related]
15. Comparison of fluorescence reagents for simultaneous determination of hydroxylated phenylalanine and nitrated tyrosine by high-performance liquid chromatography with fluorescence detection. Iwasaki Y; Mochizuki K; Nakano Y; Maruya N; Goto M; Maruyama Y; Ito R; Saito K; Nakazawa H Biomed Chromatogr; 2012 Jan; 26(1):41-50. PubMed ID: 21387354 [TBL] [Abstract][Full Text] [Related]
16. Time-resolved fluorescence. An approach in protein analysis. Villari A; Micali N; Fresta M; Trusso S; Puglisi G Adv Exp Med Biol; 1996; 398():739-47. PubMed ID: 8906351 [TBL] [Abstract][Full Text] [Related]
17. A unique fluorescence biosensor for selective detection of tryptophan and histidine. Sutariya PG; Pandya A; Lodha A; Menon SK Analyst; 2014 Oct; 139(19):4794-8. PubMed ID: 25096414 [TBL] [Abstract][Full Text] [Related]
18. Vibrational analysis of amino acids and short peptides in hydrated media. VIII. Amino acids with aromatic side chains: L-phenylalanine, L-tyrosine, and L-tryptophan. Hernández B; Pflüger F; Adenier A; Kruglik SG; Ghomi M J Phys Chem B; 2010 Nov; 114(46):15319-30. PubMed ID: 21043521 [TBL] [Abstract][Full Text] [Related]
19. Chiral Poly(ionic liquid) with Nonconjugated Backbone as a Fluorescent Enantioselective Sensor for Phenylalaninol and Tryptophan. Wu D; Yu Y; Zhang J; Guo L; Kong Y ACS Appl Mater Interfaces; 2018 Jul; 10(27):23362-23368. PubMed ID: 29911854 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous monitoring of the environment of tryptophan, tyrosine, and phenylalanine residues in proteins by near-ultraviolet second-derivative spectroscopy. Mach H; Middaugh CR Anal Biochem; 1994 Nov; 222(2):323-31. PubMed ID: 7864355 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]