These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

749 related articles for article (PubMed ID: 27416840)

  • 1. Correcting for Measurement Error in Time-Varying Covariates in Marginal Structural Models.
    Kyle RP; Moodie EE; Klein MB; Abrahamowicz M
    Am J Epidemiol; 2016 Aug; 184(3):249-58. PubMed ID: 27416840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating Flexible Modeling of Continuous Covariates in Inverse-Weighted Estimators.
    Kyle RP; Moodie EEM; Klein MB; Abrahamowicz M
    Am J Epidemiol; 2019 Jun; 188(6):1181-1191. PubMed ID: 30649165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy of conventional and marginal structural Cox model estimators: a simulation study.
    Xiao Y; Abrahamowicz M; Moodie EE
    Int J Biostat; 2010; 6(2):Article 13. PubMed ID: 21969997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating from marginal structural models with time-dependent confounding.
    Havercroft WG; Didelez V
    Stat Med; 2012 Dec; 31(30):4190-206. PubMed ID: 22826156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A marginal structural model for multiple-outcome survival data:assessing the impact of injection drug use on several causes of death in the Canadian Co-infection Cohort.
    Moodie EE; Stephens DA; Klein MB
    Stat Med; 2014 Apr; 33(8):1409-25. PubMed ID: 24272681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Considerations for analysis of time-to-event outcomes measured with error: Bias and correction with SIMEX.
    Oh EJ; Shepherd BE; Lumley T; Shaw PA
    Stat Med; 2018 Apr; 37(8):1276-1289. PubMed ID: 29193180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On Bayesian estimation of marginal structural models.
    Saarela O; Stephens DA; Moodie EE; Klein MB
    Biometrics; 2015 Jun; 71(2):279-88. PubMed ID: 25677103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect modification by time-varying covariates.
    Robins JM; Hernán MA; Rotnitzky A
    Am J Epidemiol; 2007 Nov; 166(9):994-1002; discussion 1003-4. PubMed ID: 17875581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The alarming problems of confounding equivalence using logistic regression models in the perspective of causal diagrams.
    Yu Y; Li H; Sun X; Su P; Wang T; Liu Y; Yuan Z; Liu Y; Xue F
    BMC Med Res Methodol; 2017 Dec; 17(1):177. PubMed ID: 29281984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.
    Hogan JW; Lancaster T
    Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Longitudinal plasmode algorithms to evaluate statistical methods in realistic scenarios: an illustration applied to occupational epidemiology.
    Souli Y; Trudel X; Diop A; Brisson C; Talbot D
    BMC Med Res Methodol; 2023 Oct; 23(1):242. PubMed ID: 37853309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Longitudinal Studies With Repeated Outcome Measures: Adjusting for Time-Dependent Confounding Using Conventional Methods.
    Keogh RH; Daniel RM; VanderWeele TJ; Vansteelandt S
    Am J Epidemiol; 2018 May; 187(5):1085-1092. PubMed ID: 29020128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity analyses for unmeasured confounding assuming a marginal structural model for repeated measures.
    Brumback BA; Hernán MA; Haneuse SJ; Robins JM
    Stat Med; 2004 Mar; 23(5):749-67. PubMed ID: 14981673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerated failure time models with covariates subject to measurement error.
    He W; Yi GY; Xiong J
    Stat Med; 2007 Nov; 26(26):4817-32. PubMed ID: 17436310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement error in covariates in the marginal hazards model for multivariate failure time data.
    Greene WF; Cai J
    Biometrics; 2004 Dec; 60(4):987-96. PubMed ID: 15606419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-stage instrumental variable methods for estimating the causal odds ratio: analysis of bias.
    Cai B; Small DS; Have TR
    Stat Med; 2011 Jul; 30(15):1809-24. PubMed ID: 21495062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive truncated weighting for improving marginal structural model estimation of treatment effects informally censored by subsequent therapy.
    Bai X; Liu J; Li L; Faries D
    Pharm Stat; 2015; 14(6):448-54. PubMed ID: 26436533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simulation-based marginal method for longitudinal data with dropout and mismeasured covariates.
    Yi GY
    Biostatistics; 2008 Jul; 9(3):501-12. PubMed ID: 18199691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences between marginal structural models and conventional models in their exposure effect estimates: a systematic review.
    Suarez D; Borràs R; Basagaña X
    Epidemiology; 2011 Jul; 22(4):586-8. PubMed ID: 21540744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of methods to estimate the survivor average causal effect in the presence of missing data: a simulation study.
    McGuinness MB; Kasza J; Karahalios A; Guymer RH; Finger RP; Simpson JA
    BMC Med Res Methodol; 2019 Dec; 19(1):223. PubMed ID: 31795945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.