These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27416878)

  • 1. Locomotion enhancement of an inchworm-like capsule robot using long contact devices.
    Gao J; Yan G; Wang Z; Xu F; Wang W; Jiang P; Liu D
    Int J Med Robot; 2017 Jun; 13(2):. PubMed ID: 27416878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locomotion Analysis of an Inchworm-Like Capsule Robot in the Intestinal Tract.
    Gao J; Yan G
    IEEE Trans Biomed Eng; 2016 Feb; 63(2):300-10. PubMed ID: 26186765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial annelid robot driven by soft actuators.
    Jung K; Koo JC; Nam JD; Lee YK; Choi HR
    Bioinspir Biomim; 2007 Jun; 2(2):S42-9. PubMed ID: 17671328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conditions for worm-robot locomotion in a flexible environment: theory and experiments.
    Zarrouk D; Sharf I; Shoham M
    IEEE Trans Biomed Eng; 2012 Apr; 59(4):1057-67. PubMed ID: 22231667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A wireless capsule robot with spiral legs for human intestine.
    Chen W; Yan G; Wang Z; Jiang P; Liu H
    Int J Med Robot; 2014 Jun; 10(2):147-61. PubMed ID: 23843276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase coordination and phase-velocity relationship in metameric robot locomotion.
    Fang H; Li S; Wang KW; Xu J
    Bioinspir Biomim; 2015 Oct; 10(6):066006. PubMed ID: 26513696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro-intestinal robot with wireless power transmission: design, analysis and experiment.
    Shi Y; Yan G; Chen W; Zhu B
    Comput Biol Med; 2015 Nov; 66():343-51. PubMed ID: 26278992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Locomotion of inchworm-inspired robot made of smart soft composite (SSC).
    Wang W; Lee JY; Rodrigue H; Song SH; Chu WS; Ahn SH
    Bioinspir Biomim; 2014 Oct; 9(4):046006. PubMed ID: 25289658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of locomotion efficiency of an expanding-extending robotic endoscope in the intestinal environment.
    He S; Yan G; Wang Z; Gao J; Yang K
    Proc Inst Mech Eng H; 2015 Jul; 229(7):515-23. PubMed ID: 26130309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MEMS sensors for assessing flow-related control of an underwater biomimetic robotic stingray.
    Asadnia M; Kottapalli AG; Haghighi R; Cloitre A; Alvarado PV; Miao J; Triantafyllou M
    Bioinspir Biomim; 2015 May; 10(3):036008. PubMed ID: 25984934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetic analysis and experiments of earthworm-like locomotion with compliant surfaces.
    Zarrouk D; Sharf I; Shoham M
    Bioinspir Biomim; 2016 Feb; 11(1):014001. PubMed ID: 26845111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and control of an IPMC wormlike robot.
    Arena P; Bonomo C; Fortuna L; Frasca M; Graziani S
    IEEE Trans Syst Man Cybern B Cybern; 2006 Oct; 36(5):1044-52. PubMed ID: 17036811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A micro creeping robot for colonoscopy based on the earthworm.
    Zuo J; Yan G; Gao Z
    J Med Eng Technol; 2005; 29(1):1-7. PubMed ID: 15764374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluidic switching in nanochannels for the control of Inchworm: a synthetic biomolecular motor with a power stroke.
    Niman CS; Zuckermann MJ; Balaz M; Tegenfeldt JO; Curmi PM; Forde NR; Linke H
    Nanoscale; 2014 Dec; 6(24):15008-19. PubMed ID: 25367216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intestinal Manometry Force Sensor for Robotic Capsule Endoscopy: An Acute, Multipatient In vivo Animal and Human Study.
    Francisco MM; Terry BS; Schoen JA; Rentschler ME
    IEEE Trans Biomed Eng; 2016 May; 63(5):943-951. PubMed ID: 26394411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A locomotion mechanism with external magnetic guidance for active capsule endoscope.
    Wang X; Meng MQ; Chen X
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4375-8. PubMed ID: 21096455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On designing geometric motion planners to solve regulating and trajectory tracking problems for robotic locomotion systems.
    Asnafi A; Mahzoon M
    Bioinspir Biomim; 2011 Sep; 6(3):036005. PubMed ID: 21852716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Goal-directed multimodal locomotion through coupling between mechanical and attractor selection dynamics.
    Nurzaman SG; Yu X; Kim Y; Iida F
    Bioinspir Biomim; 2015 Mar; 10(2):025004. PubMed ID: 25811228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of wormlike automated robotic endoscope: dynamic interaction between endoscopic balloon and surrounding tissues.
    Poon CCY; Leung B; Chan CKW; Lau JYW; Chiu PWY
    Surg Endosc; 2016 Feb; 30(2):772-778. PubMed ID: 26017907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic polymer composite artificial bacterial flagella.
    Peyer KE; Siringil E; Zhang L; Nelson BJ
    Bioinspir Biomim; 2014 Nov; 9(4):046014. PubMed ID: 25405833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.