These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27416879)

  • 1. GenLocDip: A Generalized Program to Calculate and Visualize Local Electric Dipole Moments.
    Groß L; Herrmann C
    J Comput Chem; 2016 Sep; 37(25):2324-34. PubMed ID: 27416879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local electric dipole moments: A generalized approach.
    Groß L; Herrmann C
    J Comput Chem; 2016 Sep; 37(25):2260-5. PubMed ID: 27520590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic dipole moments calculated using analytical molecular second-moment gradients.
    Solheim H; Ruud K; Astrand PO
    J Chem Phys; 2004 Jun; 120(22):10368-78. PubMed ID: 15268064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local electric dipole moments for periodic systems via density functional theory embedding.
    Luber S
    J Chem Phys; 2014 Dec; 141(23):234110. PubMed ID: 25527922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear Combination of Atomic Dipoles to Calculate the Bond and Molecular Dipole Moments of Molecules and Molecular Liquids.
    Chen K; Li WL; Head-Gordon T
    J Phys Chem Lett; 2021 Dec; 12(51):12360-12369. PubMed ID: 34936765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dipole and quadrupole moments of molecules in crystals: a novel approach based on integration over Hirshfeld surfaces.
    Whitten AE; Radford CJ; McKinnon JJ; Spackman MA
    J Chem Phys; 2006 Feb; 124(7):74106. PubMed ID: 16497029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of Computational Chemistry in the Experimental Determination of the Dipole Moment of Molecules in Solution.
    Cammi R
    J Comput Chem; 2019 Oct; 40(26):2309-2317. PubMed ID: 31246287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dipole moments of molecules with multi-reference character from optimally tuned range-separated density functional theory.
    Alipour M
    J Comput Chem; 2018 Jul; 39(20):1508-1516. PubMed ID: 29635817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Accurate Is Density Functional Theory at Predicting Dipole Moments? An Assessment Using a New Database of 200 Benchmark Values.
    Hait D; Head-Gordon M
    J Chem Theory Comput; 2018 Apr; 14(4):1969-1981. PubMed ID: 29562129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A data-driven approach to determine dipole moments of diatomic molecules.
    Liu X; Meijer G; Pérez-Ríos J
    Phys Chem Chem Phys; 2020 Nov; 22(42):24191-24200. PubMed ID: 33147314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Hirshfeld-I interpretation of the charge distribution, dipole and quadrupole moments of the halogenated acetylenes FCCH, ClCCH, BrCCH, and ICCH.
    Harrison JF
    J Chem Phys; 2010 Dec; 133(21):214103. PubMed ID: 21142297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of dipole-dipole interactions on coverage-dependent adsorption: CO and NO on Pt(111).
    Deshlahra P; Conway J; Wolf EE; Schneider WF
    Langmuir; 2012 Jun; 28(22):8408-17. PubMed ID: 22545625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advancing beyond charge analysis using the electronic localization function: Chemically intuitive distribution of electrostatic moments.
    Pilmé J; Piquemal JP
    J Comput Chem; 2008 Jul; 29(9):1440-9. PubMed ID: 18293309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic charges, dipole moments, and Fukui functions using the Hirshfeld partitioning of the electron density.
    De Proft F; Van Alsenoy C; Peeters A; Langenaeker W; Geerlings P
    J Comput Chem; 2002 Sep; 23(12):1198-209. PubMed ID: 12116389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ORBKIT: A modular python toolbox for cross-platform postprocessing of quantum chemical wavefunction data.
    Hermann G; Pohl V; Tremblay JC; Paulus B; Hege HC; Schild A
    J Comput Chem; 2016 Jun; 37(16):1511-20. PubMed ID: 27043934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum theory of atoms in molecules charge-charge flux-dipole flux models for the infrared intensities of X(2)CY (X = H, F, Cl; Y = O, S) molecules.
    Faria SH; da Silva JV; Haiduke RL; Vidal LN; Vazquez PA; Bruns RE
    J Phys Chem A; 2007 Aug; 111(32):7870-5. PubMed ID: 17616111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between dipole moments and harmonic vibrational frequencies in diatomic molecules.
    Hou S; Bernath PF
    J Phys Chem A; 2015 Feb; 119(8):1435-8. PubMed ID: 25654372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonmetallic electronegativity equalization and point-dipole interaction model including exchange interactions for molecular dipole moments and polarizabilities.
    Smalø HS; Astrand PO; Jensen L
    J Chem Phys; 2009 Jul; 131(4):044101. PubMed ID: 19655831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An atomic charge-charge flux-dipole flux atom-in-molecule decomposition for molecular dipole-moment derivatives and infrared fundamental intensities.
    Haiduke RL; Bruns RE
    J Phys Chem A; 2005 Mar; 109(11):2680-8. PubMed ID: 16833574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.