BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 27416931)

  • 1. Lymphocytes influence intracranial aneurysm formation and rupture: role of extracellular matrix remodeling and phenotypic modulation of vascular smooth muscle cells.
    Sawyer DM; Pace LA; Pascale CL; Kutchin AC; O'Neill BE; Starke RM; Dumont AS
    J Neuroinflammation; 2016 Jul; 13(1):185. PubMed ID: 27416931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cigarette Smoke Initiates Oxidative Stress-Induced Cellular Phenotypic Modulation Leading to Cerebral Aneurysm Pathogenesis.
    Starke RM; Thompson JW; Ali MS; Pascale CL; Martinez Lege A; Ding D; Chalouhi N; Hasan DM; Jabbour P; Owens GK; Toborek M; Hare JM; Dumont AS
    Arterioscler Thromb Vasc Biol; 2018 Mar; 38(3):610-621. PubMed ID: 29348119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow-induced, inflammation-mediated arterial wall remodeling in the formation and progression of intracranial aneurysms.
    Frösen J; Cebral J; Robertson AM; Aoki T
    Neurosurg Focus; 2019 Jul; 47(1):E21. PubMed ID: 31261126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myeloperoxidase is increased in human cerebral aneurysms and increases formation and rupture of cerebral aneurysms in mice.
    Chu Y; Wilson K; Gu H; Wegman-Points L; Dooley SA; Pierce GL; Cheng G; Pena Silva RA; Heistad DD; Hasan D
    Stroke; 2015 Jun; 46(6):1651-6. PubMed ID: 25922506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smooth Muscle Peroxisome Proliferator-Activated Receptor γ Plays a Critical Role in Formation and Rupture of Cerebral Aneurysms in Mice In Vivo.
    Hasan DM; Starke RM; Gu H; Wilson K; Chu Y; Chalouhi N; Heistad DD; Faraci FM; Sigmund CD
    Hypertension; 2015 Jul; 66(1):211-20. PubMed ID: 25916724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of TIMP-1 and TIMP-2 in the progression of cerebral aneurysms.
    Aoki T; Kataoka H; Moriwaki T; Nozaki K; Hashimoto N
    Stroke; 2007 Aug; 38(8):2337-45. PubMed ID: 17569872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. STAT3 Contributes to Intracranial Aneurysm Formation and Rupture by Modulating Inflammatory Response.
    Jiang Z; Huang J; You L; Zhang J; Li B
    Cell Mol Neurobiol; 2021 Nov; 41(8):1715-1725. PubMed ID: 32804311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of matrix metalloproteinases in the pathogenesis of intracranial aneurysms.
    Zhang X; Ares WJ; Taussky P; Ducruet AF; Grandhi R
    Neurosurg Focus; 2019 Jul; 47(1):E4. PubMed ID: 31261127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene expression profiles in human ruptured and unruptured intracranial aneurysms: what is the role of inflammation?
    Pera J; Korostynski M; Krzyszkowski T; Czopek J; Slowik A; Dziedzic T; Piechota M; Stachura K; Moskala M; Przewlocki R; Szczudlik A
    Stroke; 2010 Feb; 41(2):224-31. PubMed ID: 20044533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotypic switching of vascular smooth muscle cells in animal model of rat thoracic aortic aneurysm.
    Mao N; Gu T; Shi E; Zhang G; Yu L; Wang C
    Interact Cardiovasc Thorac Surg; 2015 Jul; 21(1):62-70. PubMed ID: 25829166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases.
    Frösen J; Piippo A; Paetau A; Kangasniemi M; Niemelä M; Hernesniemi J; Jääskeläinen J
    Stroke; 2004 Oct; 35(10):2287-93. PubMed ID: 15322297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Matrix metalloproteinases and tissue inhibitors of metalloproteinases expression in human cerebral ruptured and unruptured aneurysm.
    Jin D; Sheng J; Yang X; Gao B
    Surg Neurol; 2007; 68 Suppl 2():S11-6; discussion S16. PubMed ID: 17714769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathological findings of saccular cerebral aneurysms-impact of subintimal fibrin deposition on aneurysm rupture.
    Hokari M; Nakayama N; Nishihara H; Houkin K
    Neurosurg Rev; 2015 Jul; 38(3):531-40; discussion 540. PubMed ID: 25860660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane-Bound Thrombomodulin Regulates Macrophage Inflammation in Abdominal Aortic Aneurysm.
    Wang KC; Li YH; Shi GY; Tsai HW; Luo CY; Cheng MH; Ma CY; Hsu YY; Cheng TL; Chang BI; Lai CH; Wu HL
    Arterioscler Thromb Vasc Biol; 2015 Nov; 35(11):2412-22. PubMed ID: 26338301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modified murine intracranial aneurysm model: aneurysm formation and rupture by elastase and hypertension.
    Hosaka K; Downes DP; Nowicki KW; Hoh BL
    J Neurointerv Surg; 2014 Jul; 6(6):474-9. PubMed ID: 23943816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Ultrastructural and Stereological Analyses of Unruptured and Ruptured Saccular Intracranial Aneurysms.
    Korkmaz E; Kleinloog R; Verweij BH; Allijn IE; Hekking LHP; Regli L; Rinkel GJE; Ruigrok YM; Andries Post J
    J Neuropathol Exp Neurol; 2017 Oct; 76(10):908-916. PubMed ID: 28922850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ginsenoside Rb1 attenuates angiotensin II-induced abdominal aortic aneurysm through inactivation of the JNK and p38 signaling pathways.
    Zhang XJ; He C; Tian K; Li P; Su H; Wan JB
    Vascul Pharmacol; 2015 Oct; 73():86-95. PubMed ID: 25912763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Internal modulation of proteolysis in vascular extracellular matrix remodeling: role of ADAM metallopeptidase with thrombospondin type 1 motif 5 in the development of intracranial aneurysm rupture.
    Wang W; Zhang H; Hou C; Liu Q; Yang S; Zhang Z; Yang W; Yang X
    Aging (Albany NY); 2021 May; 13(9):12800-12816. PubMed ID: 33934089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of cell-type-specific vs transmural aortic gene expression in experimental aneurysms.
    Sho E; Sho M; Nanjo H; Kawamura K; Masuda H; Dalman RL
    J Vasc Surg; 2005 May; 41(5):844-52. PubMed ID: 15886670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative evaluation of genome-wide gene expression profiles in ruptured and unruptured human intracranial aneurysms.
    Marchese E; Vignati A; Albanese A; Nucci CG; Sabatino G; Tirpakova B; Lofrese G; Zelano G; Maira G
    J Biol Regul Homeost Agents; 2010; 24(2):185-95. PubMed ID: 20487632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.