These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 27417442)

  • 21. Rechargeable Aluminium-Sulfur Battery with Improved Electrochemical Performance by Cobalt-Containing Electrocatalyst.
    Guo Y; Hu Z; Wang J; Peng Z; Zhu J; Ji H; Wan LJ
    Angew Chem Int Ed Engl; 2020 Dec; 59(51):22963-22967. PubMed ID: 32830352
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hybrid Lithium-Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte.
    Yu X; Bi Z; Zhao F; Manthiram A
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16625-31. PubMed ID: 26161547
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrafast Rechargeable Zinc Battery Based on High-Voltage Graphite Cathode and Stable Nonaqueous Electrolyte.
    Zhang N; Dong Y; Wang Y; Wang Y; Li J; Xu J; Liu Y; Jiao L; Cheng F
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32978-32986. PubMed ID: 31418545
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrocatalysis for Continuous Multi-Step Reactions in Quasi-Solid-State Electrolytes Towards High-Energy and Long-Life Aluminum-Sulfur Batteries.
    Huang Z; Wang W; Song WL; Wang M; Chen H; Jiao S; Fang D
    Angew Chem Int Ed Engl; 2022 Jun; 61(24):e202202696. PubMed ID: 35384209
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rechargeable Zinc-Aqueous Polysulfide Battery with a Mediator-Ion Solid Electrolyte.
    Gross MM; Manthiram A
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10612-10617. PubMed ID: 29561586
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemical properties of an aluminum anode in an ionic liquid electrolyte for rechargeable aluminum-ion batteries.
    Choi S; Go H; Lee G; Tak Y
    Phys Chem Chem Phys; 2017 Mar; 19(13):8653-8656. PubMed ID: 28144668
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries.
    Fang X; Peng H
    Small; 2015 Apr; 11(13):1488-511. PubMed ID: 25510342
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stabilized Lithium-Metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries.
    Zu C; Manthiram A
    J Phys Chem Lett; 2014 Aug; 5(15):2522-7. PubMed ID: 26277939
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of Electrolytes for High-Performance Aqueous Aluminum-Ion Batteries.
    Ejigu A; Le Fevre LW; Elgendy A; Spencer BF; Bawn C; Dryfe RAW
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25232-25245. PubMed ID: 35622978
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Stable Quasi-Solid-State Sodium-Sulfur Battery.
    Zhou D; Chen Y; Li B; Fan H; Cheng F; Shanmukaraj D; Rojo T; Armand M; Wang G
    Angew Chem Int Ed Engl; 2018 Aug; 57(32):10168-10172. PubMed ID: 29947070
    [TBL] [Abstract][Full Text] [Related]  

  • 32. All-Organic Rechargeable Battery with Reversibility Supported by "Water-in-Salt" Electrolyte.
    Dong X; Yu H; Ma Y; Bao JL; Truhlar DG; Wang Y; Xia Y
    Chemistry; 2017 Feb; 23(11):2560-2565. PubMed ID: 28075043
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly Reversible Room-Temperature Sulfur/Long-Chain Sodium Polysulfide Batteries.
    Yu X; Manthiram A
    J Phys Chem Lett; 2014 Jun; 5(11):1943-7. PubMed ID: 26273877
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Aluminum-Sulfur Battery with a Fast Kinetic Response.
    Yang H; Yin L; Liang J; Sun Z; Wang Y; Li H; He K; Ma L; Peng Z; Qiu S; Sun C; Cheng HM; Li F
    Angew Chem Int Ed Engl; 2018 Feb; 57(7):1898-1902. PubMed ID: 29276817
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A stable room-temperature sodium-sulfur battery.
    Wei S; Xu S; Agrawral A; Choudhury S; Lu Y; Tu Z; Ma L; Archer LA
    Nat Commun; 2016 Jun; 7():11722. PubMed ID: 27277345
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prospect of Sulfurized Pyrolyzed Poly(acrylonitrile) (S@pPAN) Cathode Materials for Rechargeable Lithium Batteries.
    Yang H; Chen J; Yang J; Wang J
    Angew Chem Int Ed Engl; 2020 May; 59(19):7306-7318. PubMed ID: 31713966
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hybrid Electrolyte Design for High-Performance Zinc-Sulfur Battery.
    Guo Y; Chua R; Chen Y; Cai Y; Tang EJJ; Lim JJN; Tran TH; Verma V; Wong MW; Srinivasan M
    Small; 2023 Jul; 19(29):e2207133. PubMed ID: 36971296
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of strategies for modern rechargeable batteries.
    Goodenough JB
    Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Environmental Screening of Electrode Materials for a Rechargeable Aluminum Battery with an AlCl₃/EMIMCl Electrolyte.
    Ellingsen LA; Holland A; Drillet JF; Peters W; Eckert M; Concepcion C; Ruiz O; Colin JF; Knipping E; Pan Q; Wills RGA; Majeau-Bettez G
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29865218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.