These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 27417442)

  • 41. Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery.
    Wu C; Gu S; Zhang Q; Bai Y; Li M; Yuan Y; Wang H; Liu X; Yuan Y; Zhu N; Wu F; Li H; Gu L; Lu J
    Nat Commun; 2019 Jan; 10(1):73. PubMed ID: 30622264
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Solid/Quasi-Solid Phase Conversion of Sulfur in Lithium-Sulfur Battery.
    Li X; Yuan L; Liu D; Xiang J; Li Z; Huang Y
    Small; 2022 Oct; 18(43):e2106970. PubMed ID: 35218289
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A universal strategy towards high-energy aqueous multivalent-ion batteries.
    Tang X; Zhou D; Zhang B; Wang S; Li P; Liu H; Guo X; Jaumaux P; Gao X; Fu Y; Wang C; Wang C; Wang G
    Nat Commun; 2021 May; 12(1):2857. PubMed ID: 34001901
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Highly Reversible Positive-Valence Conversion of Sulfur Chemistry for High-Voltage Zinc-Sulfur Batteries.
    Chen Z; Huang Z; Zhu J; Li D; Chen A; Wei Z; Wang Y; Li N; Zhi C
    Adv Mater; 2024 Jul; 36(30):e2402898. PubMed ID: 38862392
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rechargeable Room-Temperature Na-CO2 Batteries.
    Hu X; Sun J; Li Z; Zhao Q; Chen C; Chen J
    Angew Chem Int Ed Engl; 2016 May; 55(22):6482-6. PubMed ID: 27089434
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional materials for rechargeable batteries.
    Cheng F; Liang J; Tao Z; Chen J
    Adv Mater; 2011 Apr; 23(15):1695-715. PubMed ID: 21394791
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Initiating a Reversible Aqueous Zn/Sulfur Battery through a "Liquid Film".
    Zhao Y; Wang D; Li X; Yang Q; Guo Y; Mo F; Li Q; Peng C; Li H; Zhi C
    Adv Mater; 2020 Aug; 32(32):e2003070. PubMed ID: 32596928
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rechargeable Mg batteries based on a Ag
    Zhang Y; Li X; Shen J; Chen Z; Cao SA; Li T; Xu F
    Dalton Trans; 2019 Oct; 48(38):14390-14397. PubMed ID: 31508626
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Construction of All-Solid-State Batteries based on a Sulfur-Graphene Composite and Li
    Xu R; Wu Z; Zhang S; Wang X; Xia Y; Xia X; Huang X; Tu J
    Chemistry; 2017 Oct; 23(56):13950-13956. PubMed ID: 28722816
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ionic liquid electrolytes as a platform for rechargeable metal-air batteries: a perspective.
    Kar M; Simons TJ; Forsyth M; MacFarlane DR
    Phys Chem Chem Phys; 2014 Sep; 16(35):18658-74. PubMed ID: 25093926
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Aluminum metal anode rechargeable batteries with sulfur-carbon composite cathodes and inorganic chloroaluminate ionic liquid.
    Tsuda T; Sasaki J; Uemura Y; Kojima T; Senoh H; Kuwabata S
    Chem Commun (Camb); 2022 Feb; 58(10):1518-1521. PubMed ID: 34935787
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reversible electrochemical oxidation of sulfur in ionic liquid for high-voltage Al-S batteries.
    Li H; Meng R; Guo Y; Chen B; Jiao Y; Ye C; Long Y; Tadich A; Yang QH; Jaroniec M; Qiao SZ
    Nat Commun; 2021 Sep; 12(1):5714. PubMed ID: 34588446
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermodynamics and Kinetics of Sulfur Cathode during Discharge in MgTFSI
    Gao T; Ji X; Hou S; Fan X; Li X; Yang C; Han F; Wang F; Jiang J; Xu K; Wang C
    Adv Mater; 2018 Jan; 30(3):. PubMed ID: 29194777
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lithium-sulfur batteries based on nitrogen-doped carbon and an ionic-liquid electrolyte.
    Sun XG; Wang X; Mayes RT; Dai S
    ChemSusChem; 2012 Oct; 5(10):2079-85. PubMed ID: 22847977
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Toothpaste-like Electrode: A Novel Approach to Optimize the Interface for Solid-State Sodium-Ion Batteries with Ultralong Cycle Life.
    Liu L; Qi X; Ma Q; Rong X; Hu YS; Zhou Z; Li H; Huang X; Chen L
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):32631-32636. PubMed ID: 27934144
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Quinone-Based Electrode for High-Performance Rechargeable Aluminum-Ion Batteries with a Low-Cost AlCl
    Kao YT; Patil SB; An CY; Huang SK; Lin JC; Lee TS; Lee YC; Chou HL; Chen CW; Chang YJ; Lai YH; Wang DY
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):25853-25860. PubMed ID: 32406673
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High power rechargeable magnesium/iodine battery chemistry.
    Tian H; Gao T; Li X; Wang X; Luo C; Fan X; Yang C; Suo L; Ma Z; Han W; Wang C
    Nat Commun; 2017 Jan; 8():14083. PubMed ID: 28071666
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Beyond Intercalation Chemistry for Rechargeable Mg Batteries: A Short Review and Perspective.
    Zhao-Karger Z; Fichtner M
    Front Chem; 2018; 6():656. PubMed ID: 30697538
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Highly Reversible Chevrel Phase Mo
    Liu M; Lv G; Liu H; Zhang J; Liu T; Kong L; Liao L; Guo J
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):34698-34703. PubMed ID: 37432250
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Boosting the "Solid-Liquid-Solid" Conversion Reaction via Bifunctional Carbonate-Based Electrolyte for Ultra-long-life Potassium-Sulfur Batteries.
    Ye S; Yao N; Chen X; Ma M; Wang L; Chen Z; Yao Y; Zhang Q; Yu Y
    Angew Chem Int Ed Engl; 2023 Oct; 62(44):e202307728. PubMed ID: 37707498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.