These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 27417547)

  • 1. Multiple cues influence multiple traits in the phenotypically plastic melanization of the cabbage white butterfly.
    Stoehr AM; Wojan EM
    Oecologia; 2016 Nov; 182(3):691-701. PubMed ID: 27417547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resource-based trade-offs and the adaptive significance of seasonal plasticity in butterfly wing melanism.
    Stoehr AM; Glaenzer K; VanWanzeele D; Rumschlag S
    Ecol Evol; 2024 May; 14(5):e11309. PubMed ID: 38698928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Additive and non-additive effects of day and night temperatures on thermally plastic traits in a model for adaptive seasonal plasticity.
    Rodrigues YK; van Bergen E; Alves F; Duneau D; Beldade P
    Evolution; 2021 Jul; 75(7):1805-1819. PubMed ID: 34097756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compensating for climate change-induced cue-environment mismatches: evidence for contemporary evolution of a photoperiodic reaction norm in Colias butterflies.
    Nielsen ME; Kingsolver JG
    Ecol Lett; 2020 Jul; 23(7):1129-1136. PubMed ID: 32333476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DISSECTING CORRELATED CHARACTERS: ADAPTIVE ASPECTS OF PHENOTYPIC COVARIATION IN MELANIZATION PATTERN OF PIERIS BUTTERFLIES.
    Kingsolver JG; Wiernasz DC
    Evolution; 1987 May; 41(3):491-503. PubMed ID: 28563806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zebrafish take their cue from temperature but not photoperiod for the seasonal plasticity of thermal performance.
    Condon CH; Chenoweth SF; Wilson RS
    J Exp Biol; 2010 Nov; 213(Pt 21):3705-9. PubMed ID: 20952619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VIABILITY SELECTION ON SEASONALLY POLYPHENIC TRAITS: WING MELANIN PATTERN IN WESTERN WHITE BUTTERFLIES.
    Kingsolver JG
    Evolution; 1995 Oct; 49(5):932-941. PubMed ID: 28564878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive developmental plasticity: compartmentalized responses to environmental cues and to corresponding internal signals provide phenotypic flexibility.
    Mateus AR; Marques-Pita M; Oostra V; Lafuente E; Brakefield PM; Zwaan BJ; Beldade P
    BMC Biol; 2014 Nov; 12():97. PubMed ID: 25413287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genotype-environment interactions rule the response of a widespread butterfly to temperature variation.
    Günter F; Beaulieu M; Freiberg KF; Welzel I; Toshkova N; Žagar A; Simčič T; Fischer K
    J Evol Biol; 2020 Jul; 33(7):920-929. PubMed ID: 32243031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterns of phenotypic plasticity in common and rare environments: a study of host use and color learning in the cabbage white butterfly Pieris rapae.
    Snell-Rood EC; Papaj DR
    Am Nat; 2009 May; 173(5):615-31. PubMed ID: 19302028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental determinants of population divergence in life-history traits for an invasive species: climate, seasonality and natural enemies.
    Seiter S; Kingsolver J
    J Evol Biol; 2013 Aug; 26(8):1634-45. PubMed ID: 23859223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cost of melanization: butterfly wing coloration under environmental stress.
    Talloen W; Van Dyck H; Lens L
    Evolution; 2004 Feb; 58(2):360-6. PubMed ID: 15068352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictability of temporal variation in climate and the evolution of seasonal polyphenism in tropical butterfly communities.
    Halali S; Halali D; Barlow HS; Molleman F; Kodandaramaiah U; Brakefield PM; Brattström O
    J Evol Biol; 2021 Sep; 34(9):1362-1375. PubMed ID: 34173293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenotypic plasticity, sexual selection and the evolution of colour patterns.
    Price TD
    J Exp Biol; 2006 Jun; 209(Pt 12):2368-76. PubMed ID: 16731813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal plasticity of growth and development varies adaptively among alternative developmental pathways.
    Kivelä SM; Svensson B; Tiwe A; Gotthard K
    Evolution; 2015 Sep; 69(9):2399-413. PubMed ID: 26202579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization, costs, cues and future perspectives of phenotypic plasticity.
    Schneider HM
    Ann Bot; 2022 Sep; 130(2):131-148. PubMed ID: 35771883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fitness costs of thermal reaction norms for wing melanisation in the large white butterfly (Pieris brassicae).
    Chaput-Bardy A; Ducatez S; Legrand D; Baguette M
    PLoS One; 2014; 9(2):e90026. PubMed ID: 24587196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why study plasticity in multiple traits? New hypotheses for how phenotypically plastic traits interact during development and selection.
    Nielsen ME; Papaj DR
    Evolution; 2022 May; 76(5):858-869. PubMed ID: 35274745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the fate of seasonally plastic traits in a rainforest butterfly under relaxed selection.
    Oostra V; Brakefield PM; Hiltemann Y; Zwaan BJ; Brattström O
    Ecol Evol; 2014 Jul; 4(13):2654-67. PubMed ID: 25077017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic adaptation to agricultural environments: cabbage white butterflies (Pieris rapae) as a case study.
    Sikkink KL; Kobiela ME; Snell-Rood EC
    BMC Genomics; 2017 May; 18(1):412. PubMed ID: 28549454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.