These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27417547)

  • 21. Thermal Physiology and Developmental Plasticity of Pigmentation in the Harlequin Bug (Hemiptera: Pentatomidae).
    Sibilia CD; Brosko KA; Hickling CH; Thompson LM; Grayson KL; Olson JR
    J Insect Sci; 2018 Jul; 18(4):. PubMed ID: 30010926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Geographic variation in ultraviolet reflectance of the wings of the female cabbage butterfly, Pieris rapae.
    Obara Y; Ozawa G; Fukano Y
    Zoolog Sci; 2008 Nov; 25(11):1106-10. PubMed ID: 19267621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phenotypic plasticity facilitates mutational variance, genetic variance, and evolvability along the major axis of environmental variation.
    Draghi JA; Whitlock MC
    Evolution; 2012 Sep; 66(9):2891-902. PubMed ID: 22946810
    [TBL] [Abstract][Full Text] [Related]  

  • 24. EVOLUTION AND COADAPTATION OF THERMOREGULATORY BEHAVIOR AND WING PIGMENTATION PATTERN IN PIERID BUTTERFLIES.
    Kingsolver JG
    Evolution; 1987 May; 41(3):472-490. PubMed ID: 28563799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. FITNESS CONSEQUENCES OF SEASONAL POLYPHENISM IN WESTERN WHITE BUTTERFLIES.
    Kingsolver JG
    Evolution; 1995 Oct; 49(5):942-954. PubMed ID: 28564872
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mate preference for a phenotypically plastic trait is learned, and may facilitate preference-phenotype matching.
    Westerman EL; Chirathivat N; Schyling E; Monteiro A
    Evolution; 2014 Jun; 68(6):1661-70. PubMed ID: 24528407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The joint influence of photoperiod and temperature during growth cessation and development of dormancy in white spruce (Picea glauca).
    Hamilton JA; El Kayal W; Hart AT; Runcie DE; Arango-Velez A; Cooke JE
    Tree Physiol; 2016 Nov; 36(11):1432-1448. PubMed ID: 27449791
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The adaptive role of melanin plasticity in thermally variable environments.
    Britton S; Davidowitz G
    J Evol Biol; 2023 Dec; 36(12):1811-1821. PubMed ID: 37916691
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developmental plasticity in multimodal signals: light environment produces novel signalling phenotypes in a butterfly.
    Zambre AM; Burns L; Suresh J; Hegeman AD; Snell-Rood EC
    Biol Lett; 2022 Aug; 18(8):20220099. PubMed ID: 35975631
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Can epigenetics translate environmental cues into phenotypes?
    Norouzitallab P; Baruah K; Vanrompay D; Bossier P
    Sci Total Environ; 2019 Jan; 647():1281-1293. PubMed ID: 30180336
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modular phenotypic plasticity: divergent responses of barnacle penis and feeding leg form to variation in density and wave-exposure.
    Neufeld CJ
    J Exp Zool B Mol Dev Evol; 2011 Jun; 316(4):254-62. PubMed ID: 21548076
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shedding light on the evolution of plasticity in natural populations.
    Hyma KE; Caicedo AL
    Mol Ecol; 2011 Sep; 20(17):3491-3. PubMed ID: 21884290
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phenotypic integration does not constrain phenotypic plasticity: differential plasticity of traits is associated to their integration across environments.
    Matesanz S; Blanco-Sánchez M; Ramos-Muñoz M; de la Cruz M; Benavides R; Escudero A
    New Phytol; 2021 Sep; 231(6):2359-2370. PubMed ID: 34097309
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Translating environmental gradients into discontinuous reaction norms via hormone signalling in a polyphenic butterfly.
    Oostra V; de Jong MA; Invergo BM; Kesbeke F; Wende F; Brakefield PM; Zwaan BJ
    Proc Biol Sci; 2011 Mar; 278(1706):789-97. PubMed ID: 20826484
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strong phenotypic plasticity limits potential for evolutionary responses to climate change.
    Oostra V; Saastamoinen M; Zwaan BJ; Wheat CW
    Nat Commun; 2018 Mar; 9(1):1005. PubMed ID: 29520061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Benefits of phenotypic plasticity for population growth in varying environments.
    Xue B; Leibler S
    Proc Natl Acad Sci U S A; 2018 Dec; 115(50):12745-12750. PubMed ID: 30478048
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptation in a variable environment: Phenotypic plasticity and bet-hedging during egg diapause and hatching in an annual killifish.
    Furness AI; Lee K; Reznick DN
    Evolution; 2015 Jun; 69(6):1461-1475. PubMed ID: 25908306
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A COMPARISON OF TEMPERATURE-INDUCED POLYPHENISM IN AFRICAN BICYCLUS BUTTERFLIES FROM A SEASONAL SAVANNAH-RAINFOREST ECOTONE.
    Roskam JC; Brakefield PM
    Evolution; 1996 Dec; 50(6):2360-2372. PubMed ID: 28565687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A discordance of seasonally covarying cues uncovers misregulated phenotypes in the heterophyllous pitcher plant
    Fukushima K; Narukawa H; Palfalvi G; Hasebe M
    Proc Biol Sci; 2021 Jan; 288(1943):20202568. PubMed ID: 33499794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermoregulatory significance of wing melanization in Pieris butterflies (Lepidoptera: Pieridae): physics, posture, and pattern.
    Kingsolver JG
    Oecologia; 1985 Jul; 66(4):546-553. PubMed ID: 28310797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.