BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 274177)

  • 1. Comparison of metoprine (DDMP) and etoprine (DDEP) by measuring the inhibition of deoxyuridine incorporation into the DNA of human leukemic cells 1,2,3.
    Laszlo J; Fyfe MJ; Swedwick D; Lee L; Brown O
    Cancer Treat Rep; 1978 Mar; 62(3):341-4. PubMed ID: 274177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human plasma and amino acids as moderators of uptake and metabolic consequences of antifolates in WIL-2 and human leukemia cells.
    Fyfe MJ; Sedwick WD; Brown OE; Laszlo J
    J Natl Cancer Inst; 1981 Mar; 66(3):445-51. PubMed ID: 6937701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New dose-time relationships of folate antagonists to sustain inhibition of human lymphoblasts and leukemic cells in vitro.
    Sedwick WD; Kutler M; Frazer T; Brown OE; Laszlo J
    Cancer Res; 1979 Sep; 39(9):3612-8. PubMed ID: 314333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the lipid-soluble diaminopyrimidines, metoprine and etoprine, in the avian sarcoma virus rat glioma model.
    Serano RD; Sigel CW; Nichol CA; Bigner DD
    Cancer Treat Rep; 1982 Jan; 66(1):99-106. PubMed ID: 6272992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antifolate-induced misincorporation of deoxyuridine monophosphate into DNA: inhibition of high molecular weight DNA synthesis in human lymphoblastoid cells.
    Sedwick WD; Kutler M; Brown OE
    Proc Natl Acad Sci U S A; 1981 Feb; 78(2):917-21. PubMed ID: 6940156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deoxyuridine incorporation as a useful measure of methotrexate and metoprine uptake and metabolic effectiveness.
    Sedwick WD; Fyfe MJ; Brown OE; Frazer TA; Kutler M; Laszlo J
    Mol Pharmacol; 1979 Sep; 16(2):607-13. PubMed ID: 514260
    [No Abstract]   [Full Text] [Related]  

  • 7. DNA synthesis in leukemic cells under the action of cytotoxic agents in vitro and in vivo.
    Wilmanns W
    Natl Cancer Inst Monogr; 1971 Dec; 34():153-9. PubMed ID: 5291099
    [No Abstract]   [Full Text] [Related]  

  • 8. Comparative studies of methotrexate and metoprine: metabolic toxicity and cell killing.
    Sedwick WD; Fyfe MJ; Hamrell M; Laszlo J
    Adv Enzyme Regul; 1978; 17():399-416. PubMed ID: 294129
    [No Abstract]   [Full Text] [Related]  

  • 9. Enzyme activities and deoxynucleoside utilization of leukemic leukocytes in relation to drug therapy and resistance.
    Roberts D; Hall TC
    Cancer Res; 1969 Jan; 29(1):166-73. PubMed ID: 5249740
    [No Abstract]   [Full Text] [Related]  

  • 10. Inhibition of DNA synthesis by lonidamine and hyperthermia in human chronic myeloid leukemia cells.
    Chitnis M; Juvekar A; Adwankar M; Advani S
    Anticancer Res; 1986; 6(4):749-51. PubMed ID: 3463243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural resistance to methotrexate in human acute nonlymphocytic leukemia.
    Bertino JR; Sawicki WL; Cashmore AR; Cadman EC; Skeel RT
    Cancer Treat Rep; 1977 Jul; 61(4):667-73. PubMed ID: 267508
    [No Abstract]   [Full Text] [Related]  

  • 12. Threshold methotrexate concentration for in vivo inhibition of DNA synthesis in normal and tumorous target tissues.
    Chabner BA; Young RC
    J Clin Invest; 1973 Aug; 52(8):1804-11. PubMed ID: 4719662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The intracellular mechanism of action of metoprine (DDMP).
    Browman GP; Calvert AH; Taylor GA; Hart LI; Harrap KR
    Eur J Cancer (1965); 1980 Dec; 16(12):1547-54. PubMed ID: 6971755
    [No Abstract]   [Full Text] [Related]  

  • 14. Synergistic growth inhibition of rat hepatoma cells exposed in vitro to N10-propargyl-5,8-dideazafolate with methotrexate or the lipophilic antifolates trimetrexate or metoprine.
    Galivan J; Nimec Z; Rhee M
    Cancer Res; 1987 Oct; 47(20):5256-60. PubMed ID: 2958130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid-soluble inhibitors of dihydrofolate reductase. I. Kinetics, tissue distribution, and extent of metabolism of pyrimethamine, metoprine, and etoprine in the rat, dog, and man.
    Cavallito JC; Nichol CA; Brenckman WD; Deangelis RL; Stickney DR; Simmons WS; Sigel CW
    Drug Metab Dispos; 1978; 6(3):329-37. PubMed ID: 26555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of tetrahydrouridine on the uptake and metabolism of 1-beta-D-arabinofuranosylcytosine in human normal and leukemic cells.
    Ho DH; Carter CJ; Brown NS; Hester J; McCredie K; Benjamin RS; Freireich EJ; Bodey GP
    Cancer Res; 1980 Jul; 40(7):2444-6. PubMed ID: 6248205
    [No Abstract]   [Full Text] [Related]  

  • 17. Biochemical studies with 1 beta-D-arabinofuranosylcytosine in human leukemic leukocytes and normal bone marrow cells.
    Creasey WA; DeConti RC; Kaplan SR
    Cancer Res; 1968 Jun; 28(6):1074-81. PubMed ID: 5241767
    [No Abstract]   [Full Text] [Related]  

  • 18. Deoxyribonucleoside triphosphate metabolism of leukemic cells.
    Omine M; Iwata N; Arai T; Suda T
    Nihon Ketsueki Gakkai Zasshi; 1977 Dec; 40(6):1092-103. PubMed ID: 273360
    [No Abstract]   [Full Text] [Related]  

  • 19. Biochemical correlates of responsiveness and collateral sensitivity of some methotrexate-resistant murine tumors to the lipophilic antifolate, metoprine.
    Sirotnak FM; Moccio DM; Goutas LJ; Kelleher LE; Montgomery JA
    Cancer Res; 1982 Mar; 42(3):924-8. PubMed ID: 7059991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytotoxicity of 5-fluoro-5'-O-nitro-2'-deoxyuridine, a new fluorinated pyrimidine derivative, in L1210 cultures.
    Roberts D; Franklin P; Odom G; Peck C; Chwang TL
    Mol Pharmacol; 1982 Nov; 22(3):760-5. PubMed ID: 6218391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.