These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 27417926)

  • 1. Engineering Flavin-Dependent Halogenases.
    Payne JT; Andorfer MC; Lewis JC
    Methods Enzymol; 2016; 575():93-126. PubMed ID: 27417926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding and Improving the Activity of Flavin-Dependent Halogenases via Random and Targeted Mutagenesis.
    Andorfer MC; Lewis JC
    Annu Rev Biochem; 2018 Jun; 87():159-185. PubMed ID: 29589959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying and Engineering Flavin Dependent Halogenases for Selective Biocatalysis.
    Lewis JC
    Acc Chem Res; 2024 Aug; 57(15):2067-2079. PubMed ID: 39038085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application and Modification of Flavin-Dependent Halogenases.
    van Pée KH; Milbredt D; Patallo EP; Weichold V; Gajewi M
    Methods Enzymol; 2016; 575():65-92. PubMed ID: 27417925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flavin-dependent halogenases catalyze enantioselective olefin halocyclization.
    Mondal D; Fisher BF; Jiang Y; Lewis JC
    Nat Commun; 2021 Jun; 12(1):3268. PubMed ID: 34075034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flavin-dependent halogenases involved in secondary metabolism in bacteria.
    van Pée KH; Patallo EP
    Appl Microbiol Biotechnol; 2006 May; 70(6):631-41. PubMed ID: 16544142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing lipases and related enzymes for efficient application.
    Bornscheuer UT; Bessler C; Srinivas R; Krishna SH
    Trends Biotechnol; 2002 Oct; 20(10):433-7. PubMed ID: 12220906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aromatic Halogenation by Using Bifunctional Flavin Reductase-Halogenase Fusion Enzymes.
    Andorfer MC; Belsare KD; Girlich AM; Lewis JC
    Chembiochem; 2017 Nov; 18(21):2099-2103. PubMed ID: 28879681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond.
    Podzelinska K; Latimer R; Bhattacharya A; Vining LC; Zechel DL; Jia Z
    J Mol Biol; 2010 Mar; 397(1):316-31. PubMed ID: 20080101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the stability and catalyst lifetime of the halogenase RebH by directed evolution.
    Poor CB; Andorfer MC; Lewis JC
    Chembiochem; 2014 Jun; 15(9):1286-9. PubMed ID: 24849696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed evolution of enzymes for applied biocatalysis.
    Turner NJ
    Trends Biotechnol; 2003 Nov; 21(11):474-8. PubMed ID: 14573359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional insights into the self-sufficient flavin-dependent halogenase.
    Dai L; Li H; Dai S; Zhang Q; Zheng H; Hu Y; Guo RT; Chen CC
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129312. PubMed ID: 38216020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures, mechanisms and applications of flavin-dependent halogenases.
    Phintha A; Prakinee K; Chaiyen P
    Enzymes; 2020; 47():327-364. PubMed ID: 32951827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric catalysis by flavin-dependent halogenases.
    Jiang Y; Lewis JC
    Chirality; 2023 Aug; 35(8):452-460. PubMed ID: 36916449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantioselective Desymmetrization of Methylenedianilines via Enzyme-Catalyzed Remote Halogenation.
    Payne JT; Butkovich PH; Gu Y; Kunze KN; Park HJ; Wang DS; Lewis JC
    J Am Chem Soc; 2018 Jan; 140(2):546-549. PubMed ID: 29294291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Structure-Guided Switch in the Regioselectivity of a Tryptophan Halogenase.
    Shepherd SA; Menon BR; Fisk H; Struck AW; Levy C; Leys D; Micklefield J
    Chembiochem; 2016 May; 17(9):821-4. PubMed ID: 26840773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Single-Component Flavin Reductase/Flavin-Dependent Halogenase AetF is a Versatile Catalyst for Selective Bromination and Iodination of Arenes and Olefins.
    Jiang Y; Snodgrass HM; Zubi YS; Roof CV; Guan Y; Mondal D; Honeycutt NH; Lee JW; Lewis RD; Martinez CA; Lewis JC
    Angew Chem Int Ed Engl; 2022 Dec; 61(51):e202214610. PubMed ID: 36282507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed Evolution of Proteins Based on Mutational Scanning.
    Acevedo-Rocha CG; Ferla M; Reetz MT
    Methods Mol Biol; 2018; 1685():87-128. PubMed ID: 29086305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed Evolution of Protein Catalysts.
    Zeymer C; Hilvert D
    Annu Rev Biochem; 2018 Jun; 87():131-157. PubMed ID: 29494241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissecting the low catalytic capability of flavin-dependent halogenases.
    Phintha A; Prakinee K; Jaruwat A; Lawan N; Visitsatthawong S; Kantiwiriyawanitch C; Songsungthong W; Trisrivirat D; Chenprakhon P; Mulholland A; van Pée KH; Chitnumsub P; Chaiyen P
    J Biol Chem; 2021; 296():100068. PubMed ID: 33465708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.