These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 27417932)

  • 1. Natural Product Biosynthesis in Escherichia coli: Mentha Monoterpenoids.
    Toogood HS; Tait S; Jervis A; Ní Cheallaigh A; Humphreys L; Takano E; Gardiner JM; Scrutton NS
    Methods Enzymol; 2016; 575():247-70. PubMed ID: 27417932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of MhMYB1 and MhMYB2 transcription factors on the monoterpenoid biosynthesis pathway in l-menthol chemotype of Mentha haplocalyx Briq.
    An X; Liao Y; Yu Y; Fan J; Wan J; Wei Y; Ouyang Z
    Planta; 2024 May; 260(1):3. PubMed ID: 38767800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis and production of sabinene: current state and perspectives.
    Cao Y; Zhang H; Liu H; Liu W; Zhang R; Xian M; Liu H
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1535-1544. PubMed ID: 29264773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From Bugs to Bioplastics: Total (+)-Dihydrocarvide Biosynthesis by Engineered Escherichia coli.
    Ascue Avalos GA; Toogood HS; Tait S; Messiha HL; Scrutton NS
    Chembiochem; 2019 Mar; 20(6):785-792. PubMed ID: 30431225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Escherichia coli coculture systems for the production of biochemical products.
    Zhang H; Pereira B; Li Z; Stephanopoulos G
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):8266-71. PubMed ID: 26111796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Engineering Approach for Rewiring Microbial Metabolism.
    Wenk S; Yishai O; Lindner SN; Bar-Even A
    Methods Enzymol; 2018; 608():329-367. PubMed ID: 30173769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting Single Domain Antibodies as Regulatory Parts to Modulate Monoterpenoid Production in
    Wilkes J; Scott-Tucker A; Wright M; Crabbe T; Scrutton NS
    ACS Synth Biol; 2020 Oct; 9(10):2828-2839. PubMed ID: 32927940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic biology strategies for microbial biosynthesis of plant natural products.
    Cravens A; Payne J; Smolke CD
    Nat Commun; 2019 May; 10(1):2142. PubMed ID: 31086174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Microbial synthesis of monoterpenoids: a review].
    Zhang F; Wang Y; Li C
    Sheng Wu Gong Cheng Xue Bao; 2022 Feb; 38(2):427-442. PubMed ID: 35234374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Wide Analysis of Terpene Synthase Gene Family in
    Chen Z; Vining KJ; Qi X; Yu X; Zheng Y; Liu Z; Fang H; Li L; Bai Y; Liang C; Li W; Lange BM
    Genes (Basel); 2021 Apr; 12(4):. PubMed ID: 33918244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Halomonas and Pathway Engineering for Bioplastics Production.
    Xiao-Ran J; Jin Y; Xiangbin C; Guo-Qiang C
    Methods Enzymol; 2018; 608():309-328. PubMed ID: 30173767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic Menthol Production: One-Pot Approach Using Engineered Escherichia coli.
    Toogood HS; Ní Cheallaigh A; Tait S; Mansell DJ; Jervis A; Lygidakis A; Humphreys L; Takano E; Gardiner JM; Scrutton NS
    ACS Synth Biol; 2015 Oct; 4(10):1112-23. PubMed ID: 26017480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prototyping of microbial chassis for the biomanufacturing of high-value chemical targets.
    Robinson CJ; Tellechea-Luzardo J; Carbonell P; Jervis AJ; Yan C; Hollywood KA; Dunstan MS; Currin A; Takano E; Scrutton NS
    Biochem Soc Trans; 2021 Jun; 49(3):1055-1063. PubMed ID: 34100907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative glandular trichome transcriptome-based gene characterization reveals reasons for differential (-)-menthol biosynthesis in Mentha species.
    Akhtar MQ; Qamar N; Yadav P; Kulkarni P; Kumar A; Shasany AK
    Physiol Plant; 2017 Jun; 160(2):128-141. PubMed ID: 28188954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering and synthetic biology approaches driving isoprenoid production in Escherichia coli.
    Wang C; Zada B; Wei G; Kim SW
    Bioresour Technol; 2017 Oct; 241():430-438. PubMed ID: 28599221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of Escherichia coli for de novo production of 3-phenylpropanol via retrobiosynthesis approach.
    Liu Z; Zhang X; Lei D; Qiao B; Zhao GR
    Microb Cell Fact; 2021 Jun; 20(1):121. PubMed ID: 34176467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constructing a synthetic constitutive metabolic pathway in Escherichia coli for (R, R)-2,3-butanediol production.
    Tong YJ; Ji XJ; Shen MQ; Liu LG; Nie ZK; Huang H
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):637-47. PubMed ID: 26428232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic operon for (R,R)-2,3-butanediol production in Bacillus subtilis and Escherichia coli.
    de Oliveira RR; Nicholson WL
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):719-28. PubMed ID: 26454865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida.
    Mi J; Becher D; Lubuta P; Dany S; Tusch K; Schewe H; Buchhaupt M; Schrader J
    Microb Cell Fact; 2014 Dec; 13():170. PubMed ID: 25471523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of squalene by microbes: an update.
    Xu W; Ma X; Wang Y
    World J Microbiol Biotechnol; 2016 Dec; 32(12):195. PubMed ID: 27730499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.