BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 27417938)

  • 1. Redox chemistry of Mycobacterium tuberculosis alkylhydroperoxide reductase E (AhpE): Structural and mechanistic insight into a mycoredoxin-1 independent reductive pathway of AhpE via mycothiol.
    Kumar A; Balakrishna AM; Nartey W; Manimekalai MSS; Grüber G
    Free Radic Biol Med; 2016 Aug; 97():588-601. PubMed ID: 27417938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mycothiol/mycoredoxin 1-dependent reduction of the peroxiredoxin AhpE from Mycobacterium tuberculosis.
    Hugo M; Van Laer K; Reyes AM; Vertommen D; Messens J; Radi R; Trujillo M
    J Biol Chem; 2014 Feb; 289(8):5228-39. PubMed ID: 24379404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and mechanistic insights into Mycothiol Disulphide Reductase and the Mycoredoxin-1-alkylhydroperoxide reductase E assembly of Mycobacterium tuberculosis.
    Kumar A; Nartey W; Shin J; Manimekalai MSS; Grüber G
    Biochim Biophys Acta Gen Subj; 2017 Sep; 1861(9):2354-2366. PubMed ID: 28499823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiol and sulfenic acid oxidation of AhpE, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics.
    Hugo M; Turell L; Manta B; Botti H; Monteiro G; Netto LE; Alvarez B; Radi R; Trujillo M
    Biochemistry; 2009 Oct; 48(40):9416-26. PubMed ID: 19737009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of formation and reactivity of the persulfide in the one-cysteine peroxiredoxin from
    Cuevasanta E; Reyes AM; Zeida A; Mastrogiovanni M; De Armas MI; Radi R; Alvarez B; Trujillo M
    J Biol Chem; 2019 Sep; 294(37):13593-13605. PubMed ID: 31311857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The active site architecture in peroxiredoxins: a case study on Mycobacterium tuberculosis AhpE.
    Pedre B; van Bergen LA; Palló A; Rosado LA; Dufe VT; Molle IV; Wahni K; Erdogan H; Alonso M; Proft FD; Messens J
    Chem Commun (Camb); 2016 Aug; 52(67):10293-6. PubMed ID: 27471753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Basis of Hydroperoxide Specificity in Peroxiredoxins: The Case of AhpE from Mycobacterium tuberculosis.
    Zeida A; Reyes AM; Lichtig P; Hugo M; Vazquez DS; Santos J; González Flecha FL; Radi R; Estrin DA; Trujillo M
    Biochemistry; 2015 Dec; 54(49):7237-47. PubMed ID: 26569371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the additional cysteine 503 of vancomycin-resistant Enterococcus faecalis (V583) alkylhydroperoxide reductase subunit F (AhpF) and the mechanism of AhpF and subunit C assembling.
    Toh YK; Shin J; Balakrishna AM; Kamariah N; Grüber A; Eisenhaber F; Eisenhaber B; Grüber G
    Free Radic Biol Med; 2019 Jul; 138():10-22. PubMed ID: 31047989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidizing substrate specificity of Mycobacterium tuberculosis alkyl hydroperoxide reductase E: kinetics and mechanisms of oxidation and overoxidation.
    Reyes AM; Hugo M; Trostchansky A; Capece L; Radi R; Trujillo M
    Free Radic Biol Med; 2011 Jul; 51(2):464-73. PubMed ID: 21571062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mycoredoxin-1 is one of the missing links in the oxidative stress defence mechanism of Mycobacteria.
    Van Laer K; Buts L; Foloppe N; Vertommen D; Van Belle K; Wahni K; Roos G; Nilsson L; Mateos LM; Rawat M; van Nuland NA; Messens J
    Mol Microbiol; 2012 Nov; 86(4):787-804. PubMed ID: 22970802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PrxQ B from Mycobacterium tuberculosis is a monomeric, thioredoxin-dependent and highly efficient fatty acid hydroperoxide reductase.
    Reyes AM; Vazquez DS; Zeida A; Hugo M; Piñeyro MD; De Armas MI; Estrin D; Radi R; Santos J; Trujillo M
    Free Radic Biol Med; 2016 Dec; 101():249-260. PubMed ID: 27751911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The antibacterial prodrug activator Rv2466c is a mycothiol-dependent reductase in the oxidative stress response of
    Rosado LA; Wahni K; Degiacomi G; Pedre B; Young D; de la Rubia AG; Boldrin F; Martens E; Marcos-Pascual L; Sancho-Vaello E; Albesa-Jové D; Provvedi R; Martin C; Makarov V; Versées W; Verniest G; Guerin ME; Mateos LM; Manganelli R; Messens J
    J Biol Chem; 2017 Aug; 292(32):13097-13110. PubMed ID: 28620052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate-induced structural alterations of Mycobacterial mycothione reductase and critical residues involved.
    Kumar A; Subramanian Manimekalai MS; Grüber G
    FEBS Lett; 2018 Feb; 592(4):568-585. PubMed ID: 29377100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemistry and Redox Biology of Mycothiol.
    Reyes AM; Pedre B; De Armas MI; Tossounian MA; Radi R; Messens J; Trujillo M
    Antioxid Redox Signal; 2018 Feb; 28(6):487-504. PubMed ID: 28372502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a Mycothiol-Dependent Nitroreductase from Mycobacterium tuberculosis.
    Negri A; Javidnia P; Mu R; Zhang X; Vendome J; Gold B; Roberts J; Barman D; Ioerger T; Sacchettini JC; Jiang X; Burns-Huang K; Warrier T; Ling Y; Warren JD; Oren DA; Beuming T; Wang H; Wu J; Li H; Rhee KY; Nathan CF; Liu G; Somersan-Karakaya S
    ACS Infect Dis; 2018 May; 4(5):771-787. PubMed ID: 29465985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal Structure of AhpE from Mycobacterium tuberculosis, a 1-Cys peroxiredoxin.
    Li S; Peterson NA; Kim MY; Kim CY; Hung LW; Yu M; Lekin T; Segelke BW; Lott JS; Baker EN
    J Mol Biol; 2005 Mar; 346(4):1035-46. PubMed ID: 15701515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural snapshots of yeast alkyl hydroperoxide reductase Ahp1 peroxiredoxin reveal a novel two-cysteine mechanism of electron transfer to eliminate reactive oxygen species.
    Lian FM; Yu J; Ma XX; Yu XJ; Chen Y; Zhou CZ
    J Biol Chem; 2012 May; 287(21):17077-17087. PubMed ID: 22474296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NrdH-redoxin of Mycobacterium tuberculosis and Corynebacterium glutamicum dimerizes at high protein concentration and exclusively receives electrons from thioredoxin reductase.
    Van Laer K; Dziewulska AM; Fislage M; Wahni K; Hbeddou A; Collet JF; Versées W; Mateos LM; Tamu Dufe V; Messens J
    J Biol Chem; 2013 Mar; 288(11):7942-7955. PubMed ID: 23362277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structures and site-directed mutagenesis of a mycothiol-dependent enzyme reveal a novel folding and molecular basis for mycothiol-mediated maleylpyruvate isomerization.
    Wang R; Yin YJ; Wang F; Li M; Feng J; Zhang HM; Zhang JP; Liu SJ; Chang WR
    J Biol Chem; 2007 Jun; 282(22):16288-294. PubMed ID: 17428791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox biology of tuberculosis pathogenesis.
    Trivedi A; Singh N; Bhat SA; Gupta P; Kumar A
    Adv Microb Physiol; 2012; 60():263-324. PubMed ID: 22633061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.