These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 27418042)

  • 41. Virus-Induced Gene Silencing as a Tool to Study Regulation of Alkaloid Biosynthesis in Medicinal Plants.
    Patra B; Liu Y; Singleton JJ; Singh SK; Pattanaik S; Yuan L
    Methods Mol Biol; 2022; 2469():155-164. PubMed ID: 35508837
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cross-family transcription factor interaction between MYC2 and GBFs modulates terpenoid indole alkaloid biosynthesis.
    Sui X; Singh SK; Patra B; Schluttenhofer C; Guo W; Pattanaik S; Yuan L
    J Exp Bot; 2018 Aug; 69(18):4267-4281. PubMed ID: 29931167
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Opium poppy and Madagascar periwinkle: model non-model systems to investigate alkaloid biosynthesis in plants.
    Facchini PJ; De Luca V
    Plant J; 2008 May; 54(4):763-84. PubMed ID: 18476877
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Proteins prenylated by type I protein geranylgeranyltransferase act positively on the jasmonate signalling pathway triggering the biosynthesis of monoterpene indole alkaloids in Catharanthus roseus.
    Courdavault V; Burlat V; St-Pierre B; Giglioli-Guivarc'h N
    Plant Cell Rep; 2009 Jan; 28(1):83-93. PubMed ID: 18813931
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Strategies for engineering plant natural products: the iridoid-derived monoterpene indole alkaloids of Catharanthus roseus.
    O'Connor SE
    Methods Enzymol; 2012; 515():189-206. PubMed ID: 22999175
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The expression of Terpenoid Indole Alkaloid (TIAs) pathway genes in Catharanthus roseus in response to salicylic acid treatment.
    Soltani N; Nazarian-Firouzabadi F; Shafeinia A; Sadr AS; Shirali M
    Mol Biol Rep; 2020 Sep; 47(9):7009-7016. PubMed ID: 32886329
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An protocol for genetic transformation of Catharanthus roseus by Agrobacterium rhizogenes A4.
    Zhou ML; Zhu XM; Shao JR; Wu YM; Tang YX
    Appl Biochem Biotechnol; 2012 Apr; 166(7):1674-84. PubMed ID: 22328251
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Solution of the multistep pathway for assembly of corynanthean, strychnos, iboga, and aspidosperma monoterpenoid indole alkaloids from 19
    Qu Y; Easson MEAM; Simionescu R; Hajicek J; Thamm AMK; Salim V; De Luca V
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):3180-3185. PubMed ID: 29511102
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Two Tabersonine 6,7-Epoxidases Initiate Lochnericine-Derived Alkaloid Biosynthesis in
    Carqueijeiro I; Brown S; Chung K; Dang TT; Walia M; Besseau S; Dugé de Bernonville T; Oudin A; Lanoue A; Billet K; Munsch T; Koudounas K; Melin C; Godon C; Razafimandimby B; de Craene JO; Glévarec G; Marc J; Giglioli-Guivarc'h N; Clastre M; St-Pierre B; Papon N; Andrade RB; O'Connor SE; Courdavault V
    Plant Physiol; 2018 Aug; 177(4):1473-1486. PubMed ID: 29934299
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improved accumulation of ajmalicine and tetrahydroalstonine in Catharanthus cells expressing an ABC transporter.
    Pomahacová B; Dusek J; Dusková J; Yazaki K; Roytrakul S; Verpoorte R
    J Plant Physiol; 2009 Sep; 166(13):1405-12. PubMed ID: 19403195
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Discovery and functional analysis of monoterpenoid indole alkaloid pathways in plants.
    De Luca V; Salim V; Levac D; Atsumi SM; Yu F
    Methods Enzymol; 2012; 515():207-29. PubMed ID: 22999176
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of cellular differentiation and elicitation on intermediate and late steps of terpenoid indole alkaloid biosynthesis in Catharanthus roseus.
    Shukla AK; Shasany AK; Verma RK; Gupta MM; Mathur AK; Khanuja SP
    Protoplasma; 2010 Jun; 242(1-4):35-47. PubMed ID: 20217156
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Emerging trends in research on spatial and temporal organization of terpenoid indole alkaloid pathway in Catharanthus roseus: a literature update.
    Verma P; Mathur AK; Srivastava A; Mathur A
    Protoplasma; 2012 Apr; 249(2):255-68. PubMed ID: 21630129
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Artemisinic Acid Serves as a Novel ORCA3 Inducer to Enhance Biosynthesis of Terpenoid Indole Alkaloids in Catharanthus roseus Cambial Meristematic Cells.
    Wang M; Zi J; Zhu J; Chen S; Wang P; Song L; Yu R
    Nat Prod Commun; 2016 Jun; 11(6):715-7. PubMed ID: 27534099
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differential secretion and accumulation of terpene indole alkaloids in hairy roots of Catharanthus roseus treated with methyl jasmonate.
    Ruiz-May E; Galaz-Avalos RM; Loyola-Vargas VM
    Mol Biotechnol; 2009 Mar; 41(3):278-85. PubMed ID: 18841500
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CaaX-prenyltransferases are essential for expression of genes involvedin the early stages of monoterpenoid biosynthetic pathway in Catharanthus roseus cells.
    Courdavault V; Thiersault M; Courtois M; Gantet P; Oudin A; Doireau P; St-Pierre B; Giglioli-Guivarc'h N
    Plant Mol Biol; 2005 Apr; 57(6):855-70. PubMed ID: 15952070
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In-depth proteome mining of cultured Catharanthus roseus cells identifies candidate proteins involved in the synthesis and transport of secondary metabolites.
    Champagne A; Rischer H; Oksman-Caldentey KM; Boutry M
    Proteomics; 2012 Dec; 12(23-24):3536-47. PubMed ID: 23044725
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Localization of tabersonine 16-hydroxylase and 16-OH tabersonine-16-O-methyltransferase to leaf epidermal cells defines them as a major site of precursor biosynthesis in the vindoline pathway in Catharanthus roseus.
    Murata J; De Luca V
    Plant J; 2005 Nov; 44(4):581-94. PubMed ID: 16262708
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inverted stereocontrol of iridoid synthase in snapdragon.
    Kries H; Kellner F; Kamileen MO; O'Connor SE
    J Biol Chem; 2017 Sep; 292(35):14659-14667. PubMed ID: 28701463
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhancement of Vindoline and Catharanthine Accumulation, Antioxidant Enzymes Activities, and Gene Expression Levels in
    Tang W; Liu X; He Y; Yang F
    Mar Drugs; 2022 Mar; 20(3):. PubMed ID: 35323487
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.