These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 27418125)

  • 21. Chondrocyte hypertrophy in skeletal development, growth, and disease.
    Sun MM; Beier F
    Birth Defects Res C Embryo Today; 2014 Mar; 102(1):74-82. PubMed ID: 24677724
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chondrocytic ephrin B2 promotes cartilage destruction by osteoclasts in endochondral ossification.
    Tonna S; Poulton IJ; Taykar F; Ho PW; Tonkin B; Crimeen-Irwin B; Tatarczuch L; McGregor NE; Mackie EJ; Martin TJ; Sims NA
    Development; 2016 Feb; 143(4):648-57. PubMed ID: 26755702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation.
    Kozhemyakina E; Lassar AB; Zelzer E
    Development; 2015 Mar; 142(5):817-31. PubMed ID: 25715393
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A microarray approach for comparative expression profiling of the discrete maturation zones of mouse growth plate cartilage.
    Belluoccio D; Bernardo BC; Rowley L; Bateman JF
    Biochim Biophys Acta; 2008 May; 1779(5):330-40. PubMed ID: 18374667
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ALK2 functions as a BMP type I receptor and induces Indian hedgehog in chondrocytes during skeletal development.
    Zhang D; Schwarz EM; Rosier RN; Zuscik MJ; Puzas JE; O'Keefe RJ
    J Bone Miner Res; 2003 Sep; 18(9):1593-604. PubMed ID: 12968668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sprouty2 regulates endochondral bone formation by modulation of RTK and BMP signaling.
    Joo A; Long R; Cheng Z; Alexander C; Chang W; Klein OD
    Bone; 2016 Jul; 88():170-179. PubMed ID: 27130872
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conditional Kif3a ablation causes abnormal hedgehog signaling topography, growth plate dysfunction, and excessive bone and cartilage formation during mouse skeletogenesis.
    Koyama E; Young B; Nagayama M; Shibukawa Y; Enomoto-Iwamoto M; Iwamoto M; Maeda Y; Lanske B; Song B; Serra R; Pacifici M
    Development; 2007 Jun; 134(11):2159-69. PubMed ID: 17507416
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Roles of Wnt/β-catenin signalling pathway in the bony repair of injured growth plate cartilage in young rats.
    Chung R; Wong D; Macsai C; Piergentili A; Del Bello F; Quaglia W; Xian CJ
    Bone; 2013 Feb; 52(2):651-8. PubMed ID: 23149278
    [TBL] [Abstract][Full Text] [Related]  

  • 29. BMP signaling in the cartilage growth plate.
    Pogue R; Lyons K
    Curr Top Dev Biol; 2006; 76():1-48. PubMed ID: 17118262
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conditional Deletion of Prolyl Hydroxylase Domain-Containing Protein 2 (Phd2) Gene Reveals Its Essential Role in Chondrocyte Function and Endochondral Bone Formation.
    Cheng S; Xing W; Pourteymoor S; Schulte J; Mohan S
    Endocrinology; 2016 Jan; 157(1):127-40. PubMed ID: 26562260
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Core Binding Factor β Plays a Critical Role During Chondrocyte Differentiation.
    Park NR; Lim KE; Han MS; Che X; Park CY; Kim JE; Taniuchi I; Bae SC; Choi JY
    J Cell Physiol; 2016 Jan; 231(1):162-71. PubMed ID: 26058470
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thyroid hormone enhances aggrecanase-2/ADAM-TS5 expression and proteoglycan degradation in growth plate cartilage.
    Makihira S; Yan W; Murakami H; Furukawa M; Kawai T; Nikawa H; Yoshida E; Hamada T; Okada Y; Kato Y
    Endocrinology; 2003 Jun; 144(6):2480-8. PubMed ID: 12746310
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of selenium and iodine deficiency on bone, cartilage growth plate and chondrocyte differentiation in two generations of rats.
    Ren FL; Guo X; Zhang RJ; Wang ShJ; Zuo H; Zhang ZT; Geng D; Yu Y; Su M
    Osteoarthritis Cartilage; 2007 Oct; 15(10):1171-7. PubMed ID: 17490897
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Smad2 and Smad3 Regulate Chondrocyte Proliferation and Differentiation in the Growth Plate.
    Wang W; Song B; Anbarchian T; Shirazyan A; Sadik JE; Lyons KM
    PLoS Genet; 2016 Oct; 12(10):e1006352. PubMed ID: 27741240
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Independent regulation of skeletal growth by Ihh and IGF signaling.
    Long F; Joeng KS; Xuan S; Efstratiadis A; McMahon AP
    Dev Biol; 2006 Oct; 298(1):327-33. PubMed ID: 16905129
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Different Roles of GRP78 on Cell Proliferation and Apoptosis in Cartilage Development.
    Xiong Z; Jiang R; Li X; Liu Y; Guo F
    Int J Mol Sci; 2015 Sep; 16(9):21153-76. PubMed ID: 26370957
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiology and pathophysiology of the growth plate.
    Ballock RT; O'Keefe RJ
    Birth Defects Res C Embryo Today; 2003 May; 69(2):123-43. PubMed ID: 12955857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent research on the growth plate: Mechanisms for growth plate injury repair and potential cell-based therapies for regeneration.
    Chung R; Xian CJ
    J Mol Endocrinol; 2014 Aug; 53(1):T45-61. PubMed ID: 25114207
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of lead on growth plate chondrocyte phenotype.
    Hicks DG; O'Keefe RJ; Reynolds KJ; Cory-Slechta DA; Puzas JE; Judkins A; Rosier RN
    Toxicol Appl Pharmacol; 1996 Sep; 140(1):164-72. PubMed ID: 8806882
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression profile of genes related to osteoclastogenesis in mouse growth plate and articular cartilage.
    Kishimoto K; Kitazawa R; Kurosaka M; Maeda S; Kitazawa S
    Histochem Cell Biol; 2006 May; 125(5):593-602. PubMed ID: 16283360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.