BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 27418282)

  • 1. Wide-line NMR and DSC studies on intrinsically disordered p53 transactivation domain and its helically pre-structured segment.
    Tompa P; Han KH; Bokor M; Kamasa P; Tantos Á; Fritz B; Kim DH; Lee C; Verebélyi T; Tompa K
    BMB Rep; 2016 Sep; 49(9):497-501. PubMed ID: 27418282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping the interactions of the p53 transactivation domain with the KIX domain of CBP.
    Lee CW; Arai M; Martinez-Yamout MA; Dyson HJ; Wright PE
    Biochemistry; 2009 Mar; 48(10):2115-24. PubMed ID: 19220000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-water and protein-buffer interactions in the aqueous solution of an intrinsically unstructured plant dehydrin: NMR intensity and DSC aspects.
    Tompa P; Bánki P; Bokor M; Kamasa P; Kovács D; Lasanda G; Tompa K
    Biophys J; 2006 Sep; 91(6):2243-9. PubMed ID: 16798808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancer-Associated Mutations Perturb the Disordered Ensemble and Interactions of the Intrinsically Disordered p53 Transactivation Domain.
    Schrag LG; Liu X; Thevarajan I; Prakash O; Zolkiewski M; Chen J
    J Mol Biol; 2021 Jul; 433(15):167048. PubMed ID: 33984364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding Kinetics of the Intrinsically Disordered p53 Family Transactivation Domains and MDM2.
    Åberg E; Karlsson OA; Andersson E; Jemth P
    J Phys Chem B; 2018 Jul; 122(27):6899-6905. PubMed ID: 29878773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation Regulates the Bound Structure of an Intrinsically Disordered Protein: The p53-TAZ2 Case.
    Ithuralde RE; Turjanski AG
    PLoS One; 2016; 11(1):e0144284. PubMed ID: 26742101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain.
    Wells M; Tidow H; Rutherford TJ; Markwick P; Jensen MR; Mylonas E; Svergun DI; Blackledge M; Fersht AR
    Proc Natl Acad Sci U S A; 2008 Apr; 105(15):5762-7. PubMed ID: 18391200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transactivation ability of p53 transcriptional activation domain is directly related to the binding affinity to TATA-binding protein.
    Chang J; Kim DH; Lee SW; Choi KY; Sung YC
    J Biol Chem; 1995 Oct; 270(42):25014-9. PubMed ID: 7559631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of the disordered conformational ensembles of the p53 transactivation domain by cancer-associated mutations.
    Ganguly D; Chen J
    PLoS Comput Biol; 2015 Apr; 11(4):e1004247. PubMed ID: 25897952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition of the disordered p53 transactivation domain by the transcriptional adapter zinc finger domains of CREB-binding protein.
    Krois AS; Ferreon JC; Martinez-Yamout MA; Dyson HJ; Wright PE
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):E1853-62. PubMed ID: 26976603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of p53 Transactivation Domain Conformations by Ligand Binding and Cancer-Associated Mutations.
    Liu X; Chen J
    Pac Symp Biocomput; 2020; 25():195-206. PubMed ID: 31797597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Residual Structures and Transient Long-Range Interactions of p53 Transactivation Domain: Assessment of Explicit Solvent Protein Force Fields.
    Liu X; Chen J
    J Chem Theory Comput; 2019 Aug; 15(8):4708-4720. PubMed ID: 31241933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural convergence of unstructured p53 family transactivation domains in MDM2 recognition.
    Shin JS; Ha JH; Lee DH; Ryu KS; Bae KH; Park BC; Park SG; Yi GS; Chi SW
    Cell Cycle; 2015; 14(4):533-43. PubMed ID: 25591003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the p53 transactivation domain in complex with the nuclear receptor coactivator binding domain of CREB binding protein.
    Lee CW; Martinez-Yamout MA; Dyson HJ; Wright PE
    Biochemistry; 2010 Nov; 49(46):9964-71. PubMed ID: 20961098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the p300 Taz2-p53 TAD2 complex and comparison with the p300 Taz2-p53 TAD1 complex.
    Miller Jenkins LM; Feng H; Durell SR; Tagad HD; Mazur SJ; Tropea JE; Bai Y; Appella E
    Biochemistry; 2015 Mar; 54(11):2001-10. PubMed ID: 25753752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leucine-rich hydrophobic clusters promote folding of the N-terminus of the intrinsically disordered transactivation domain of p53.
    Espinoza-Fonseca LM
    FEBS Lett; 2009 Feb; 583(3):556-60. PubMed ID: 19162020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-range regulation of p53 DNA binding by its intrinsically disordered N-terminal transactivation domain.
    Krois AS; Dyson HJ; Wright PE
    Proc Natl Acad Sci U S A; 2018 Nov; 115(48):E11302-E11310. PubMed ID: 30420502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-range modulation of chain motions within the intrinsically disordered transactivation domain of tumor suppressor p53.
    Lum JK; Neuweiler H; Fersht AR
    J Am Chem Soc; 2012 Jan; 134(3):1617-22. PubMed ID: 22176582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rescuing p53 from mdm2 by a pre-structured motif in intrinsically unfolded SUMO specific protease 4.
    Kim DH; Lee C; Kim B; Lee SH; Han KH
    BMB Rep; 2017 Oct; 50(10):485-486. PubMed ID: 28712389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extended string binding mode of the phosphorylated transactivation domain of tumor suppressor p53.
    Okuda M; Nishimura Y
    J Am Chem Soc; 2014 Oct; 136(40):14143-52. PubMed ID: 25216154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.