BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 27418389)

  • 1. Self-Supporting Ion Gels for Electrochemiluminescent Sticker-Type Optoelectronic Devices.
    Hong K; Kwon YK; Ryu J; Lee JY; Kim SH; Lee KH
    Sci Rep; 2016 Jul; 6():29805. PubMed ID: 27418389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water Washable and Flexible Light-Emitting Fibers Based on Electrochemiluminescent Gels.
    Lee S; Cho WS; Park JY; Lee HJ; Lee JL; Lee KH; Hong K
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17709-17718. PubMed ID: 35389205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution-processable electrochemiluminescent ion gels for flexible, low-voltage, emissive displays on plastic.
    Moon HC; Lodge TP; Frisbie CD
    J Am Chem Soc; 2014 Mar; 136(9):3705-12. PubMed ID: 24517258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemiluminescent Transistors: A New Strategy toward Light-Emitting Switching Devices.
    Lee S; Lee HJ; Ji Y; Lee KH; Hong K
    Adv Mater; 2021 Feb; 33(5):e2005456. PubMed ID: 33345385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Star-Shaped Block Copolymers: Effective Polymer Gelators of High-Performance Gel Electrolytes for Electrochemical Devices.
    Hwang H; Park SY; Kim JK; Kim YM; Moon HC
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4399-4407. PubMed ID: 30624039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Exciplex-Based Light-Emission Pathway for Solution-State Electrochemiluminescent Devices.
    Moon CK; Butscher JF; Gather MC
    Adv Mater; 2023 Sep; 35(38):e2302544. PubMed ID: 37308129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multicolored, Low-Power, Flexible Electrochromic Devices Based on Ion Gels.
    Moon HC; Kim CH; Lodge TP; Frisbie CD
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6252-60. PubMed ID: 26867428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LEGO-like Assembly of Fibrous Modules for Display Textiles.
    Lee S; Cho WS; Cho KG; Lee JL; Lee KH; Hong K
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):41688-41696. PubMed ID: 37615163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of ion migration in electro-generated chemiluminescence depending on the luminophore types and operating conditions.
    Shin S; Park YS; Cho S; You I; Kang IS; Moon HC; Jeong U
    Chem Sci; 2018 Mar; 9(9):2480-2488. PubMed ID: 29732124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Area-Controllable Stamping of Semicrystalline Copolymer Ionogels for Solid-State Electrolyte-Gated Transistors and Light-Emitting Devices.
    Kim HJ; Yang HM; Koo J; Kang MS; Hong K; Lee KH
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):42978-42985. PubMed ID: 29144127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physically Cross-Linked Homopolymer Ion Gels for High Performance Electrolyte-Gated Transistors.
    Yang HM; Kwon YK; Lee SB; Kim S; Hong K; Lee KH
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8813-8818. PubMed ID: 28155274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating.
    Sandström A; Dam HF; Krebs FC; Edman L
    Nat Commun; 2012; 3():1002. PubMed ID: 22893126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on Tandem Polymer Light Emitting Devices.
    Lei Y; Liu Z; Fan CJ; Ji XX; Peng XF; Li GQ; Yang XH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Mar; 37(3):715-22. PubMed ID: 30148550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanically Tunable, Readily Processable Ion Gels by Self-Assembly of Block Copolymers in Ionic Liquids.
    Lodge TP; Ueki T
    Acc Chem Res; 2016; 19(10):2107-2114. PubMed ID: 27704769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational Design of Electrochemiluminescent Devices.
    Ma X; Gao W; Du F; Yuan F; Yu J; Guan Y; Sojic N; Xu G
    Acc Chem Res; 2021 Jul; 54(14):2936-2945. PubMed ID: 34165296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient and low-voltage vertical organic permeable base light-emitting transistors.
    Wu Z; Liu Y; Guo E; Darbandy G; Wang SJ; Hübner R; Kloes A; Kleemann H; Leo K
    Nat Mater; 2021 Jul; 20(7):1007-1014. PubMed ID: 33649562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Luminance of Electrochemical Cells with a Rationally Designed Ionic Iridium Complex and an Ionic Additive.
    Suhr KJ; Bastatas LD; Shen Y; Mitchell LA; Holliday BJ; Slinker JD
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):8888-92. PubMed ID: 27023074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanically Robust and Highly Conductive Poly(ionic liquid)/Polyacrylamide Double-Network Hydrogel Electrolytes for Flexible Symmetric Supercapacitors with a Wide Operating Voltage Range.
    Wei X; Lin T; Gao J; Hu Y; Zhang Z; Peng J; Li J; Zhai M
    ACS Appl Mater Interfaces; 2024 Mar; 16(10):12586-12598. PubMed ID: 38419321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermostable Ion Gels for High-Temperature Operation of Electrolyte-Gated Transistors.
    Cho KG; Cho YK; Kim JH; Yoo HY; Hong K; Lee KH
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15464-15471. PubMed ID: 32156106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Flexible Transparent Micromesh Electrodes via Blade-Coated Polymer Networks for Organic Light-Emitting Diodes.
    Zhu J; Han D; Wu X; Ting J; Du S; Arias AC
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):31687-31695. PubMed ID: 32543852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.