BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27418402)

  • 1. Transformation of galena to pyromorphite produces bioavailable sulfur for neutrophilic chemoautotrophy.
    Walczak AB; Kafantaris FA; Druschel GK; Yee N; Young LY
    Geobiology; 2016 Nov; 14(6):599-606. PubMed ID: 27418402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical and chemical analysis of elemental sulfur formation during galena surface oxidation.
    Hampton MA; Plackowski C; Nguyen AV
    Langmuir; 2011 Apr; 27(7):4190-201. PubMed ID: 21391636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyromorphite growth on lead-sulfide surfaces.
    Stack AG; Erni R; Browning ND; Casey WH
    Environ Sci Technol; 2004 Nov; 38(21):5529-34. PubMed ID: 15575268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological conversion of anglesite (PbSO(4)) and lead waste from spent car batteries to galena (PbS).
    Weijma J; De Hoop K; Bosma W; Dijkman H
    Biotechnol Prog; 2002; 18(4):770-5. PubMed ID: 12153311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lead phosphate minerals: solubility and dissolution by model and natural ligands.
    Martínez CE; Jacobson AR; Mcbride MB
    Environ Sci Technol; 2004 Nov; 38(21):5584-90. PubMed ID: 15575275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the influence of humic acids on the weathering of galena and its environmental implications.
    Liu Q; Li H; Jin G; Zheng K; Wang L
    Ecotoxicol Environ Saf; 2018 Aug; 158():230-238. PubMed ID: 29709760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incomplete transformations of Pb to pyromorphite by phosphate-induced immobilization investigated by X-ray absorption fine structure (XAFS) spectroscopy.
    Hashimoto Y; Takaoka M; Oshita K; Tanida H
    Chemosphere; 2009 Jul; 76(5):616-22. PubMed ID: 19467557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxalate-enhanced solubility of lead (Pb) in the presence of phosphate: pH control on mineral precipitation.
    McBride MB; Kelch SE; Schmidt MP; Sherpa S; Martinez CE; Aristilde L
    Environ Sci Process Impacts; 2019 Apr; 21(4):738-747. PubMed ID: 30895974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equilibrium solubility and dissolution rate of the lead phosphate chloropyromorphite.
    Xie L; Giammar DE
    Environ Sci Technol; 2007 Dec; 41(23):8050-5. PubMed ID: 18186336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lead phosphate formation in soils.
    Cotter-Howells J
    Environ Pollut; 1996; 93(1):9-16. PubMed ID: 15091364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro formation of pyromorphite via reaction of Pb sources with soft-drink phosphoric acid.
    Scheckel KG; Ryan JA
    Sci Total Environ; 2003 Jan; 302(1-3):253-65. PubMed ID: 12526914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induced biotransformation of lead (II) by Enterobacter sp. in SO
    Li Z; Su M; Duan X; Tian D; Yang M; Guo J; Wang S; Hu S
    J Hazard Mater; 2018 Sep; 357():491-497. PubMed ID: 29940467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Petrographic and spectroscopic characterization of phosphate-stabilized mine tailings from Leadville, Colorado.
    Eusden JD; Gallagher L; Eighmy TT; Crannell BS; Krzanowski JR; Butler LG; Cartledge FK; Emery EF; Shaw EL; Francis CA
    Waste Manag; 2002; 22(2):117-35. PubMed ID: 12004827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Respirometric characterization of aerobic sulfide, thiosulfate and elemental sulfur oxidation by S-oxidizing biomass.
    Mora M; López LR; Lafuente J; Pérez J; Kleerebezem R; van Loosdrecht MC; Gamisans X; Gabriel D
    Water Res; 2016 Feb; 89():282-92. PubMed ID: 26704759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafine particles derived from mineral processing: A case study of the Pb-Zn sulfide ore with emphasis on lead-bearing colloids.
    Mikhlin Y; Vorobyev S; Romanchenko A; Karasev S; Karacharov A; Zharkov S
    Chemosphere; 2016 Mar; 147():60-6. PubMed ID: 26761598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Oxidation of sulfur-containing substrates by aboriginal and experimentally designed microbial communities].
    Pivovarova TA; Bulaev AG; Roshchupko PV; Belyĭ AV; Kondrat'eva TF
    Prikl Biokhim Mikrobiol; 2012; 48(6):640-5. PubMed ID: 23330391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Galena weathering under simulated calcareous soil conditions.
    Lara RH; Briones R; Monroy MG; Mullet M; Humbert B; Dossot M; Naja GM; Cruz R
    Sci Total Environ; 2011 Sep; 409(19):3971-9. PubMed ID: 21774966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions.
    Cao X; Ma LQ; Singh SP; Zhou Q
    Environ Pollut; 2008 Mar; 152(1):184-92. PubMed ID: 17601642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic speciation and quantification of lead in phosphate-amended soils.
    Scheckel KG; Ryan JA
    J Environ Qual; 2004; 33(4):1288-95. PubMed ID: 15254110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pb remobilization by bacterially mediated dissolution of pyromorphite Pb5(PO4)3Cl in presence of phosphate-solubilizing Pseudomonas putida.
    Topolska J; Latowski D; Kaschabek S; Manecki M; Merkel BJ; Rakovan J
    Environ Sci Pollut Res Int; 2014 Jan; 21(2):1079-89. PubMed ID: 23872890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.