These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 27419053)

  • 1. Lid mobility in lipase SMG1 validated using a thiol/disulfide redox potential probe.
    Guo S; Popowicz GM; Li D; Yuan D; Wang Y
    FEBS Open Bio; 2016 May; 6(5):477-83. PubMed ID: 27419053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of a mono- and diacylglycerol lipase from Malassezia globosa reveals a novel lid conformation and insights into the substrate specificity.
    Xu T; Liu L; Hou S; Xu J; Yang B; Wang Y; Liu J
    J Struct Biol; 2012 Jun; 178(3):363-9. PubMed ID: 22484238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of Residues 103, 104, and 278 in the Activity of SMG1 Lipase from Malassezia globosa: A Site-Directed Mutagenesis Study.
    Lan D; Wang Q; Popowicz GM; Yang B; Tang Q; Wang Y
    J Microbiol Biotechnol; 2015 Nov; 25(11):1827-34. PubMed ID: 26239010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of product-bound SMG1 lipase: active site gating implications.
    Guo S; Xu J; Pavlidis IV; Lan D; Bornscheuer UT; Liu J; Wang Y
    FEBS J; 2015 Dec; 282(23):4538-47. PubMed ID: 26365206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel inhibitor against Malassezia globosa LIP1 (SMG1), a potential anti-dandruff target.
    Guo S; Huang W; Zhang J; Wang Y
    Bioorg Med Chem Lett; 2015 Sep; 25(17):3464-7. PubMed ID: 26199121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residue Asn277 affects the stability and substrate specificity of the SMG1 lipase from Malassezia globosa.
    Lan D; Wang Q; Xu J; Zhou P; Yang B; Wang Y
    Int J Mol Sci; 2015 Mar; 16(4):7273-88. PubMed ID: 25837472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular basis for substrate selectivity of a mono- and diacylglycerol lipase from Malassezia globosa.
    Liu L; Gao C; Lan D; Yang B; Wang Y
    Biochem Biophys Res Commun; 2012 Jul; 424(2):285-9. PubMed ID: 22750000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-directed mutagenesis studies of the aromatic residues at the active site of a lipase from Malassezia globosa.
    Gao C; Lan D; Liu L; Zhang H; Yang B; Wang Y
    Biochimie; 2014 Jul; 102():29-36. PubMed ID: 24556587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering the Thermostability of the Mono- and Diacylglycerol Lipase SMG1 for the Synthesis of Diacylglycerols.
    Li L; Wang Y; Cui R; Wang F; Lan D
    Foods; 2022 Dec; 11(24):. PubMed ID: 36553811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering a disulfide bond in the lid hinge region of Rhizopus chinensis lipase: increased thermostability and altered acyl chain length specificity.
    Yu XW; Tan NJ; Xiao R; Xu Y
    PLoS One; 2012; 7(10):e46388. PubMed ID: 23056295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of lipases from Malassezia restricta, a causative agent of dandruff.
    Sommer B; Overy DP; Kerr RG
    FEMS Yeast Res; 2015 Nov; 15(7):. PubMed ID: 26298017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Lid Domain in Lipases: Structural and Functional Determinant of Enzymatic Properties.
    Khan FI; Lan D; Durrani R; Huan W; Zhao Z; Wang Y
    Front Bioeng Biotechnol; 2017; 5():16. PubMed ID: 28337436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and expression of a Malassezia globosa lipase gene, LIP1.
    DeAngelis YM; Saunders CW; Johnstone KR; Reeder NL; Coleman CG; Kaczvinsky JR; Gale C; Walter R; Mekel M; Lacey MP; Keough TW; Fieno A; Grant RA; Begley B; Sun Y; Fuentes G; Youngquist RS; Xu J; Dawson TL
    J Invest Dermatol; 2007 Sep; 127(9):2138-46. PubMed ID: 17460728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of a Mono- and Diacylglycerol Lipase into a Triacylglycerol Lipase by Protein Engineering.
    Lan D; Popowicz GM; Pavlidis IV; Zhou P; Bornscheuer UT; Wang Y
    Chembiochem; 2015 Jul; 16(10):1431-4. PubMed ID: 25955297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mechanistic study into the epoxidation of carboxylic acid and alkene in a mono, di-acylglycerol lipase.
    Wang X; Tang Q; Popowicz GM; Yang B; Wang Y
    Biochem Biophys Res Commun; 2015 May; 460(2):392-6. PubMed ID: 25783054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altering the activation mechanism in Thermomyces lanuginosus lipase.
    Skjold-Jørgensen J; Vind J; Svendsen A; Bjerrum MJ
    Biochemistry; 2014 Jul; 53(25):4152-60. PubMed ID: 24870718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pancreatic lipase structure-function relationships by domain exchange.
    Carrière F; Thirstrup K; Hjorth S; Ferrato F; Nielsen PF; Withers-Martinez C; Cambillau C; Boel E; Thim L; Verger R
    Biochemistry; 1997 Jan; 36(1):239-48. PubMed ID: 8993339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into lid movements of Burkholderia cepacia lipase inferred from molecular dynamics simulations.
    Barbe S; Lafaquière V; Guieysse D; Monsan P; Remaud-Siméon M; André I
    Proteins; 2009 Nov; 77(3):509-23. PubMed ID: 19475702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lid opening and unfolding in human pancreatic lipase at low pH revealed by site-directed spin labeling EPR and FTIR spectroscopy.
    Ranaldi S; Belle V; Woudstra M; Rodriguez J; Guigliarelli B; Sturgis J; Carriere F; Fournel A
    Biochemistry; 2009 Jan; 48(3):630-8. PubMed ID: 19113953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of human pancreatic lipase-related protein 2 with the lid in an open conformation.
    Eydoux C; Spinelli S; Davis TL; Walker JR; Seitova A; Dhe-Paganon S; De Caro A; Cambillau C; Carrière F
    Biochemistry; 2008 Sep; 47(36):9553-64. PubMed ID: 18702514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.