BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 27419353)

  • 1. The Hippo pathway, p53 and cholesterol.
    Aylon Y; Oren M
    Cell Cycle; 2016 Sep; 15(17):2248-55. PubMed ID: 27419353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The LATS2 tumor suppressor inhibits SREBP and suppresses hepatic cholesterol accumulation.
    Aylon Y; Gershoni A; Rotkopf R; Biton IE; Porat Z; Koh AP; Sun X; Lee Y; Fiel MI; Hoshida Y; Friedman SL; Johnson RL; Oren M
    Genes Dev; 2016 Apr; 30(7):786-97. PubMed ID: 27013235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A functional interaction between Hippo-YAP signalling and SREBPs mediates hepatic steatosis in diabetic mice.
    Shu Z; Gao Y; Zhang G; Zhou Y; Cao J; Wan D; Zhu X; Xiong W
    J Cell Mol Med; 2019 May; 23(5):3616-3628. PubMed ID: 30821074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutant p53 Protein and the Hippo Transducers YAP and TAZ: A Critical Oncogenic Node in Human Cancers.
    Ferraiuolo M; Verduci L; Blandino G; Strano S
    Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28467351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP.
    Porstmann T; Griffiths B; Chung YL; Delpuech O; Griffiths JR; Downward J; Schulze A
    Oncogene; 2005 Sep; 24(43):6465-81. PubMed ID: 16007182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. p53 shades of Hippo.
    Furth N; Aylon Y; Oren M
    Cell Death Differ; 2018 Jan; 25(1):81-92. PubMed ID: 28984872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic control of YAP and TAZ by the mevalonate pathway.
    Sorrentino G; Ruggeri N; Specchia V; Cordenonsi M; Mano M; Dupont S; Manfrin A; Ingallina E; Sommaggio R; Piazza S; Rosato A; Piccolo S; Del Sal G
    Nat Cell Biol; 2014 Apr; 16(4):357-66. PubMed ID: 24658687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hippo pathway - brief overview of its relevance in cancer.
    Zygulska AL; Krzemieniecki K; Pierzchalski P
    J Physiol Pharmacol; 2017 Jun; 68(3):311-335. PubMed ID: 28820389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of Hippo Pathway in Cancer Stem Cell Biology.
    Park JH; Shin JE; Park HW
    Mol Cells; 2018 Feb; 41(2):83-92. PubMed ID: 29429151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-cancer efficacy of SREBP inhibitor, alone or in combination with docetaxel, in prostate cancer harboring p53 mutations.
    Li X; Wu JB; Chung LW; Huang WC
    Oncotarget; 2015 Dec; 6(38):41018-32. PubMed ID: 26512780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the Hippo pathway in cancer biology.
    Moon S; Yeon Park S; Woo Park H
    Cell Mol Life Sci; 2018 Jul; 75(13):2303-2319. PubMed ID: 29602952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncoupling of the Hippo and Rho pathways allows megakaryocytes to escape the tetraploid checkpoint.
    Roy A; Lordier L; Pioche-Durieu C; Souquere S; Roy L; Rameau P; Lapierre V; Le Cam E; Plo I; Debili N; Raslova H; Vainchenker W
    Haematologica; 2016 Dec; 101(12):1469-1478. PubMed ID: 27515249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Hippo Pathway: Biology and Pathophysiology.
    Ma S; Meng Z; Chen R; Guan KL
    Annu Rev Biochem; 2019 Jun; 88():577-604. PubMed ID: 30566373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytokinesis failure triggers hippo tumor suppressor pathway activation.
    Ganem NJ; Cornils H; Chiu SY; O'Rourke KP; Arnaud J; Yimlamai D; Théry M; Camargo FD; Pellman D
    Cell; 2014 Aug; 158(4):833-848. PubMed ID: 25126788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A kinome-wide screen using a NanoLuc LATS luminescent biosensor identifies ALK as a novel regulator of the Hippo pathway in tumorigenesis and immune evasion.
    Nouri K; Azad T; Lightbody E; Khanal P; Nicol CJ; Yang X
    FASEB J; 2019 Nov; 33(11):12487-12499. PubMed ID: 31431076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maintaining cholesterol homeostasis: sterol regulatory element-binding proteins.
    Weber LW; Boll M; Stampfl A
    World J Gastroenterol; 2004 Nov; 10(21):3081-7. PubMed ID: 15457548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DUB3 Deubiquitylating Enzymes Regulate Hippo Pathway Activity by Regulating the Stability of ITCH, LATS and AMOT Proteins.
    Nguyen HT; Kugler JM; Cohen SM
    PLoS One; 2017; 12(1):e0169587. PubMed ID: 28061504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The regulation and function of YAP transcription co-activator.
    Zhu C; Li L; Zhao B
    Acta Biochim Biophys Sin (Shanghai); 2015 Jan; 47(1):16-28. PubMed ID: 25487920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LATS tumor suppressor: a new governor of cellular homeostasis.
    Visser S; Yang X
    Cell Cycle; 2010 Oct; 9(19):3892-903. PubMed ID: 20935475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interplay of mevalonate and Hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility.
    Wang Z; Wu Y; Wang H; Zhang Y; Mei L; Fang X; Zhang X; Zhang F; Chen H; Liu Y; Jiang Y; Sun S; Zheng Y; Li N; Huang L
    Proc Natl Acad Sci U S A; 2014 Jan; 111(1):E89-98. PubMed ID: 24367099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.