BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 27419466)

  • 1. Engineering an NADPH/NADP
    Zhang J; Sonnenschein N; Pihl TP; Pedersen KR; Jensen MK; Keasling JD
    ACS Synth Biol; 2016 Dec; 5(12):1546-1556. PubMed ID: 27419466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox engineering by ectopic expression of glutamate dehydrogenase genes links NADPH availability and NADH oxidation with cold growth in Saccharomyces cerevisiae.
    Ballester-Tomás L; Randez-Gil F; Pérez-Torrado R; Prieto JA
    Microb Cell Fact; 2015 Jul; 14():100. PubMed ID: 26156706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetically encoded ATP and NAD(P)H biosensors: potential tools in metabolic engineering.
    Wang S; Jiang W; Jin X; Qi Q; Liang Q
    Crit Rev Biotechnol; 2023 Dec; 43(8):1211-1225. PubMed ID: 36130803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time monitoring of subcellular states with genetically encoded redox biosensor system (RBS) in yeast cell factories.
    Liu X; Qin L; Yu J; Sun W; Xu J; Li C
    Biosens Bioelectron; 2023 Feb; 222():114988. PubMed ID: 36521204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered Saccharomyces cerevisiae strain BioS-OS1/2, for the detection of oxidative stress.
    Jayaraman M; Radhika V; Bamne MN; Ramos R; Briggs R; Dhanasekaran DN
    Biotechnol Prog; 2005; 21(5):1373-9. PubMed ID: 16209540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering tunable biosensors for monitoring putrescine in Escherichia coli.
    Chen XF; Xia XX; Lee SY; Qian ZG
    Biotechnol Bioeng; 2018 Apr; 115(4):1014-1027. PubMed ID: 29251347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the design of an oxidative stress sensing biosensor in yeast.
    Dacquay LC; McMillen DR
    FEMS Yeast Res; 2021 May; 21(4):. PubMed ID: 33864457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution-guided engineering of small-molecule biosensors.
    Snoek T; Chaberski EK; Ambri F; Kol S; Bjørn SP; Pang B; Barajas JF; Welner DH; Jensen MK; Keasling JD
    Nucleic Acids Res; 2020 Jan; 48(1):e3. PubMed ID: 31777933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Genetic Screen To Identify Genes Influencing the Secondary Redox Couple NADPH/NADP
    Yadav S; Mody TA; Sharma A; Bachhawat AK
    G3 (Bethesda); 2020 Jan; 10(1):371-378. PubMed ID: 31757928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A genetically encoded biosensor for in vitro and in vivo detection of NADP(.).
    Zhao FL; Zhang C; Zhang C; Tang Y; Ye BC
    Biosens Bioelectron; 2016 Mar; 77():901-6. PubMed ID: 26524720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of
    Wang G; Øzmerih S; Guerreiro R; Meireles AC; Carolas A; Milne N; Jensen MK; Ferreira BS; Borodina I
    ACS Synth Biol; 2020 Mar; 9(3):634-646. PubMed ID: 32058699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering redox cofactor utilization for detoxification of glycolaldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae.
    Jayakody LN; Horie K; Hayashi N; Kitagaki H
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6589-600. PubMed ID: 23744286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, Engineering, and Characterization of Prokaryotic Ligand-Binding Transcriptional Activators as Biosensors in Yeast.
    Ambri F; Snoek T; Skjoedt ML; Jensen MK; Keasling JD
    Methods Mol Biol; 2018; 1671():269-290. PubMed ID: 29170965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Saccharomyces cerevisiae YMR315W gene encodes an NADP(H)-specific oxidoreductase regulated by the transcription factor Stb5p in response to NADPH limitation.
    Hector RE; Bowman MJ; Skory CD; Cotta MA
    N Biotechnol; 2009 Oct; 26(3-4):171-80. PubMed ID: 19712762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering transcription factor-based biosensors for repressive regulation through transcriptional deactivation design in Saccharomyces cerevisiae.
    Qiu C; Chen X; Rexida R; Shen Y; Qi Q; Bao X; Hou J
    Microb Cell Fact; 2020 Jul; 19(1):146. PubMed ID: 32690010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions.
    Canelas AB; van Gulik WM; Heijnen JJ
    Biotechnol Bioeng; 2008 Jul; 100(4):734-43. PubMed ID: 18383140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yeast Synthetic Minimal Biosensors for Evaluating Protein Production.
    Peng K; Kroukamp H; Pretorius IS; Paulsen IT
    ACS Synth Biol; 2021 Jul; 10(7):1640-1650. PubMed ID: 34126009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An NADPH-independent mechanism enhances oxidative and nitrosative stress tolerance in yeast cells lacking glucose-6-phosphate dehydrogenase activity.
    Yoshikawa Y; Nasuno R; Takagi H
    Yeast; 2021 Jul; 38(7):414-423. PubMed ID: 33648021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae.
    Outten CE; Culotta VC
    EMBO J; 2003 May; 22(9):2015-24. PubMed ID: 12727869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the Cytosolic NADPH/NADP Ratio in Saccharomyces cerevisiae using Shikimate Dehydrogenase as Sensor Reaction.
    Zhang J; ten Pierick A; van Rossum HM; Seifar RM; Ras C; Daran JM; Heijnen JJ; Wahl SA
    Sci Rep; 2015 Aug; 5():12846. PubMed ID: 26243542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.