These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 27419592)

  • 1. Piezoelectric Electromechanical Coupling in Nanomechanical Resonators with a Two-Dimensional Electron Gas.
    Shevyrin AA; Pogosov AG; Bakarov AK; Shklyaev AA
    Phys Rev Lett; 2016 Jul; 117(1):017702. PubMed ID: 27419592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-independent quantitative measurement of nanomechanical oscillator vibrations using electron-microscope linescans.
    Wang H; Fenton JC; Chiatti O; Warburton PA
    Rev Sci Instrum; 2013 Jul; 84(7):075002. PubMed ID: 23902094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and characterization of thick-film piezoelectric lead zirconate titanate ceramic resonators by tape-casting.
    Qin L; Sun Y; Wang QM; Zhong Y; Ou M; Jiang Z; Tian W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Dec; 59(12):2803-12. PubMed ID: 23221230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene as a Massless Electrode for Ultrahigh-Frequency Piezoelectric Nanoelectromechanical Systems.
    Qian Z; Liu F; Hui Y; Kar S; Rinaldi M
    Nano Lett; 2015 Jul; 15(7):4599-604. PubMed ID: 26029960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mode excitation efficiency for contour vibrations of piezoelectric resonators.
    Krushynska A; Meleshko V; Ma CC; Huang YH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct; 58(10):2222-38. PubMed ID: 21989886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive Displacement Noise Measurement of Carbon Nanotube Mechanical Resonators.
    de Bonis SL; Urgell C; Yang W; Samanta C; Noury A; Vergara-Cruz J; Dong Q; Jin Y; Bachtold A
    Nano Lett; 2018 Aug; 18(8):5324-5328. PubMed ID: 30062893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling graphene nanomechanical motion to a single-electron transistor.
    Luo G; Zhang ZZ; Deng GW; Li HO; Cao G; Xiao M; Guo GC; Guo GP
    Nanoscale; 2017 May; 9(17):5608-5614. PubMed ID: 28422197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass Sensing for the Advanced Fabrication of Nanomechanical Resonators.
    Gruber G; Urgell C; Tavernarakis A; Stavrinadis A; Tepsic S; Magén C; Sangiao S; de Teresa JM; Verlot P; Bachtold A
    Nano Lett; 2019 Oct; 19(10):6987-6992. PubMed ID: 31478676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong gate coupling of high-Q nanomechanical resonators.
    Sulkko J; Sillanpää MA; Häkkinen P; Lechner L; Helle M; Fefferman A; Parpia J; Hakonen PJ
    Nano Lett; 2010 Dec; 10(12):4884-9. PubMed ID: 21053964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of electromechanical coupling factors of low Q piezoelectric resonators operating in stiffened modes.
    San Emeterio JL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(1):108-13. PubMed ID: 18244108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing the free and surface-coupled vibrations of heated-tip atomic force microscope cantilevers.
    Killgore JP; Tung RC; Hurley DC
    Nanotechnology; 2014 Aug; 25(34):345701. PubMed ID: 25098183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing.
    Hui Y; Gomez-Diaz JS; Qian Z; Alù A; Rinaldi M
    Nat Commun; 2016 Apr; 7():11249. PubMed ID: 27080018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-Dimensional Theoretical Solution and Two-Dimensional Numerical Simulation for Functionally-Graded Piezoelectric Cantilever Beams with Different Properties in Tension and Compression.
    Xiao-Ting H; Zhi-Xin Y; Hong-Xia J; Jun-Yi S
    Polymers (Basel); 2019 Oct; 11(11):. PubMed ID: 31652723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever.
    Lee JH; Hwang KS; Park J; Yoon KH; Yoon DS; Kim TS
    Biosens Bioelectron; 2005 Apr; 20(10):2157-62. PubMed ID: 15741091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of electromechanical coupling parameters of piezoelectric materials by using piezoelectric cantilever with coplanar electrode structure in quasi-stasis.
    Zheng X; Zhu Y; Liu X; Liu J; Zhang Y; Chen J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):369-75. PubMed ID: 24474142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromechanical coupling constant extraction of thin-film piezoelectric materials using a bulk acoustic wave resonator.
    Naik RS; Lutsky JJ; Reif R; Sodini CG
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):257-63. PubMed ID: 18244177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electromechanical analysis of a symmetric piezoelectric/elastic laminate structure: theory and experiment.
    Rogacheva NN; Chou CC; Chang SH
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(2):285-94. PubMed ID: 18244180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromechanical coupling and output efficiency of piezoelectric bending actuators.
    Wang QM; Du XH; Xu B; Cross LE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):638-46. PubMed ID: 18238464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The piezoelectric gating effect in a thin bent membrane with a two-dimensional electron gas.
    Shevyrin AA; Pogosov AG
    J Phys Condens Matter; 2018 May; 30(18):184003. PubMed ID: 29533223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum thermal machines driven by vacuum forces.
    Terças H; Ribeiro S; Pezzutto M; Omar Y
    Phys Rev E; 2017 Feb; 95(2-1):022135. PubMed ID: 28297986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.