These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 27419808)

  • 41. Experimental friction coefficients for bovine cartilage measured with a pin-on-disk tribometer: testing configuration and lubricant effects.
    Shi L; Sikavitsas VI; Striolo A
    Ann Biomed Eng; 2011 Jan; 39(1):132-46. PubMed ID: 20872073
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Association of articular cartilage degradation and loss of boundary-lubricating ability of synovial fluid following injury and inflammatory arthritis.
    Elsaid KA; Jay GD; Warman ML; Rhee DK; Chichester CO
    Arthritis Rheum; 2005 Jun; 52(6):1746-55. PubMed ID: 15934070
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The amphoteric effect on friction between the bovine cartilage/cartilage surfaces under slightly sheared hydration lubrication mode.
    Pawlak Z; Gadomski A; Sojka M; Urbaniak W; Bełdowski P
    Colloids Surf B Biointerfaces; 2016 Oct; 146():452-8. PubMed ID: 27395038
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterisation of lubricin in synovial fluid from horses with osteoarthritis.
    Svala E; Jin C; Rüetschi U; Ekman S; Lindahl A; Karlsson NG; Skiöldebrand E
    Equine Vet J; 2017 Jan; 49(1):116-123. PubMed ID: 26507102
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Calcium ions have a detrimental impact on the boundary lubrication property of hyaluronic acid and lubricin (PRG-4) both alone and in combination.
    Han M; Russo MJ; Desroches PE; Silva SM; Quigley AF; Kapsa RMI; Moulton SE; Greene GW
    Colloids Surf B Biointerfaces; 2024 Feb; 234():113741. PubMed ID: 38184943
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The impact of forced joint exercise on lubricin biosynthesis from articular cartilage following ACL transection and intra-articular lubricin's effect in exercised joints following ACL transection.
    Elsaid KA; Zhang L; Waller K; Tofte J; Teeple E; Fleming BC; Jay GD
    Osteoarthritis Cartilage; 2012 Aug; 20(8):940-8. PubMed ID: 22579916
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hairy and Slippery Polyoxazoline-Based Copolymers on Model and Cartilage Surfaces.
    Morgese G; Ramakrishna SN; Simic R; Zenobi-Wong M; Benetti EM
    Biomacromolecules; 2018 Feb; 19(2):680-690. PubMed ID: 29297681
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The role of lubricant entrapment at biological interfaces: reduction of friction and adhesion in articular cartilage.
    Chan SM; Neu CP; Komvopoulos K; Reddi AH
    J Biomech; 2011 Jul; 44(11):2015-20. PubMed ID: 21679953
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Boundary lubrication in vivo.
    Hills BA
    Proc Inst Mech Eng H; 2000; 214(1):83-94. PubMed ID: 10718053
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Prevention of cartilage degeneration in a rat model of osteoarthritis by intraarticular treatment with recombinant lubricin.
    Flannery CR; Zollner R; Corcoran C; Jones AR; Root A; Rivera-Bermúdez MA; Blanchet T; Gleghorn JP; Bonassar LJ; Bendele AM; Morris EA; Glasson SS
    Arthritis Rheum; 2009 Mar; 60(3):840-7. PubMed ID: 19248108
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Construction and Tribological Properties of Biomimetic Cartilage-Lubricating Hydrogels.
    Chen Q; Liu S; Yuan Z; Yang H; Xie R; Ren L
    Gels; 2022 Jul; 8(7):. PubMed ID: 35877500
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lubricin: a versatile, biological anti-adhesive with properties comparable to polyethylene glycol.
    Greene GW; Martin LL; Tabor RF; Michalczyk A; Ackland LM; Horn R
    Biomaterials; 2015 Jun; 53():127-36. PubMed ID: 25890713
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced boundary lubrication properties of engineered menisci by lubricin localization with insulin-like growth factor I treatment.
    Bonnevie ED; Puetzer JL; Bonassar LJ
    J Biomech; 2014 Jun; 47(9):2183-8. PubMed ID: 24210471
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Surface-active phospholipid as the lubricating component of lubricin.
    Schwarz IM; Hills BA
    Br J Rheumatol; 1998 Jan; 37(1):21-6. PubMed ID: 9487246
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular synergy in biolubrication: The role of cartilage oligomeric matrix protein (COMP) in surface-structuring of lubricin.
    Raj A; Wang M; Liu C; Ali L; Karlsson NG; Claesson PM; Dėdinaitė A
    J Colloid Interface Sci; 2017 Jun; 495():200-206. PubMed ID: 28208081
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ultra-low friction between boundary layers of hyaluronan-phosphatidylcholine complexes.
    Zhu L; Seror J; Day AJ; Kampf N; Klein J
    Acta Biomater; 2017 Sep; 59():283-292. PubMed ID: 28669720
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cartilage Mimics Adaptive Lubrication.
    Liu H; Zhao X; Zhang Y; Ma S; Ma Z; Pei X; Cai M; Zhou F
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):51114-51121. PubMed ID: 33140650
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cartilage boundary lubrication of ovine synovial fluid following anterior cruciate ligament transection: a longitudinal study.
    Atarod M; Ludwig TE; Frank CB; Schmidt TA; Shrive NG
    Osteoarthritis Cartilage; 2015 Apr; 23(4):640-7. PubMed ID: 25554643
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lubrication mode analysis of articular cartilage using Stribeck surfaces.
    Gleghorn JP; Bonassar LJ
    J Biomech; 2008; 41(9):1910-8. PubMed ID: 18502429
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of phospholipidic boundary lubrication in rigid and compliant hemiarthroplasty models.
    Foy JR; Williams PF; Powell GL; Ishihara K; Nakabayashi N; LaBerge M
    Proc Inst Mech Eng H; 1999; 213(1):5-18. PubMed ID: 10087900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.