BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 27420132)

  • 1. Micron dimensioned cavity array supported lipid bilayers for the electrochemical investigation of ionophore activity.
    Maher S; Basit H; Forster RJ; Keyes TE
    Bioelectrochemistry; 2016 Dec; 112():16-23. PubMed ID: 27420132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microcavity-Supported Lipid Membranes: Versatile Platforms for Building Asymmetric Lipid Bilayers and for Protein Recognition.
    Berselli GB; Sarangi NK; Ramadurai S; Murphy PV; Keyes TE
    ACS Appl Bio Mater; 2019 Aug; 2(8):3404-3417. PubMed ID: 35030782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the structure of cholesterol-based tethered bilayer lipid membranes on ionophore activity.
    Kendall JK; Johnson BR; Symonds PH; Imperato G; Bushby RJ; Gwyer JD; van Berkel C; Evans SD; Jeuken LJ
    Chemphyschem; 2010 Jul; 11(10):2191-8. PubMed ID: 20512836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium ion transport by valinomycin across a Hg-supported lipid bilayer.
    Becucci L; Moncelli MR; Naumann R; Guidelli R
    J Am Chem Soc; 2005 Sep; 127(38):13316-23. PubMed ID: 16173764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular inversion-driven polymer insertion into model lipid bilayer membranes.
    Ramadurai S; Kohut A; Sarangi NK; Zholobko O; Baulin VA; Voronov A; Keyes TE
    J Colloid Interface Sci; 2019 Apr; 542():483-494. PubMed ID: 30772510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aqueous-filled polymer microcavity arrays: versatile & stable lipid bilayer platforms offering high lateral mobility to incorporated membrane proteins.
    Basit H; Gaul V; Maher S; Forster RJ; Keyes TE
    Analyst; 2015 May; 140(9):3012-8. PubMed ID: 25798456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How Valinomycin Ionophores Enter and Transport K
    Su Z; Ran X; Leitch JJ; Schwan AL; Faragher R; Lipkowski J
    Langmuir; 2019 Dec; 35(51):16935-16943. PubMed ID: 31742409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impedance analysis of phosphatidylcholine membranes modified with valinomycin.
    Naumowicz M; Kotynska J; Petelska A; Figaszewski Z
    Eur Biophys J; 2006 Feb; 35(3):239-46. PubMed ID: 16283290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microcavity-Supported Lipid Bilayers; Evaluation of Drug-Lipid Membrane Interactions by Electrochemical Impedance and Fluorescence Correlation Spectroscopy.
    Ramadurai S; Sarangi NK; Maher S; MacConnell N; Bond AM; McDaid D; Flynn D; Keyes TE
    Langmuir; 2019 Jun; 35(24):8095-8109. PubMed ID: 31120755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust Photoelectric Biomolecular Switch at a Microcavity-Supported Lipid Bilayer.
    Berselli GB; Gimenez AV; O'Connor A; Keyes TE
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):29158-29169. PubMed ID: 34121400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the passive permeability of antidepressants through pore-suspended lipid bilayer.
    Sarangi NK; Prabhakaran A; Roantree M; Keyes TE
    Colloids Surf B Biointerfaces; 2024 Feb; 234():113688. PubMed ID: 38128360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimodal Investigation into the Interaction of Quinacrine with Microcavity-Supported Lipid Bilayers.
    Sarangi NK; Prabhakaran A; Keyes TE
    Langmuir; 2022 May; 38(20):6411-6424. PubMed ID: 35561255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tethered lipid bilayers on electrolessly deposited gold for bioelectronic applications.
    Kohli N; Hassler BL; Parthasarathy L; Richardson RJ; Ofoli RY; Worden RM; Lee I
    Biomacromolecules; 2006 Dec; 7(12):3327-35. PubMed ID: 17154460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrogenic and nonelectrogenic ion fluxes across lipid and mitochondrial membranes mediated by monensin and monensin ethyl ester.
    Antonenko YN; Rokitskaya TI; Huczyński A
    Biochim Biophys Acta; 2015 Apr; 1848(4):995-1004. PubMed ID: 25600660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of valinomycin doping on the electrical and structural properties of planar lipid bilayers supported on polyelectrolyte multilayers.
    Gutiérrez-Pineda E; Andreozzi P; Diamanti E; Anguiano R; Ziolo RF; Moya SE; José Rodríguez-Presa M; Gervasi CA
    Bioelectrochemistry; 2021 Apr; 138():107688. PubMed ID: 33227594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polystyrene nanoparticle exposure induces ion-selective pores in lipid bilayers.
    Negoda A; Kim KJ; Crandall ED; Worden RM
    Biochim Biophys Acta; 2013 Sep; 1828(9):2215-22. PubMed ID: 23747366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of the ionophore valinomycin on biomimetic solid supported lipid DPPTE/EPC membranes.
    Rose L; Jenkins AT
    Bioelectrochemistry; 2007 May; 70(2):387-93. PubMed ID: 16875886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How do lipid nanocarriers - Cubosomes affect electrochemical properties of DMPC bilayers deposited on gold (111) electrodes?
    Alvarez-Malmagro J; Jablonowska E; Nazaruk E; Szwedziak P; Bilewicz R
    Bioelectrochemistry; 2020 Aug; 134():107516. PubMed ID: 32222670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of AC voltage on the ionophore-induced steady-state flux across the bilayer lipid membrane.
    Dzekunov SM; Antonenko YuN ; Pohl P
    Membr Cell Biol; 1997; 11(4):529-38. PubMed ID: 9553940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nigericin, monensin, and tetronasin on biohydrogenation in continuous flow-through ruminal fermenters.
    Fellner V; Sauer FD; Kramer JK
    J Dairy Sci; 1997 May; 80(5):921-8. PubMed ID: 9178132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.