These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 27420399)
1. Mechanisms involved in the development of diabetic retinopathy induced by oxidative stress. Guzman DC; Olguín HJ; García EH; Peraza AV; de la Cruz DZ; Soto MP Redox Rep; 2017 Jan; 22(1):10-16. PubMed ID: 27420399 [TBL] [Abstract][Full Text] [Related]
2. Hypoxia and oxidative stress in the causation of diabetic retinopathy. Arden GB; Sivaprasad S Curr Diabetes Rev; 2011 Sep; 7(5):291-304. PubMed ID: 21916837 [TBL] [Abstract][Full Text] [Related]
3. Activated microglia induce the production of reactive oxygen species and promote apoptosis of co-cultured retinal microvascular pericytes. Ding X; Zhang M; Gu R; Xu G; Wu H Graefes Arch Clin Exp Ophthalmol; 2017 Apr; 255(4):777-788. PubMed ID: 28074262 [TBL] [Abstract][Full Text] [Related]
4. Oxidative stress and diabetic retinopathy: development and treatment. Calderon GD; Juarez OH; Hernandez GE; Punzo SM; De la Cruz ZD Eye (Lond); 2017 Aug; 31(8):1122-1130. PubMed ID: 28452994 [TBL] [Abstract][Full Text] [Related]
5. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Dehdashtian E; Mehrzadi S; Yousefi B; Hosseinzadeh A; Reiter RJ; Safa M; Ghaznavi H; Naseripour M Life Sci; 2018 Jan; 193():20-33. PubMed ID: 29203148 [TBL] [Abstract][Full Text] [Related]
6. Targeting human 8-oxoguanine DNA glycosylase to mitochondria protects cells from high glucose-induced apoptosis. Zou YL; Luo WB; Xie L; Mao XB; Wu C; You ZP Endocrine; 2018 Jun; 60(3):445-457. PubMed ID: 29564753 [TBL] [Abstract][Full Text] [Related]
7. Mutual enhancement between high-mobility group box-1 and NADPH oxidase-derived reactive oxygen species mediates diabetes-induced upregulation of retinal apoptotic markers. Mohammad G; Alam K; Nawaz MI; Siddiquei MM; Mousa A; Abu El-Asrar AM J Physiol Biochem; 2015 Sep; 71(3):359-72. PubMed ID: 26040511 [TBL] [Abstract][Full Text] [Related]
8. The augmentation of O-GlcNAcylation reduces glyoxal-induced cell injury by attenuating oxidative stress in human retinal microvascular endothelial cells. Liu GD; Xu C; Feng L; Wang F Int J Mol Med; 2015 Oct; 36(4):1019-27. PubMed ID: 26311324 [TBL] [Abstract][Full Text] [Related]
9. Calcium dobesilate prevents the oxidative stress and inflammation induced by diabetes in the retina of db/db mice. Bogdanov P; Solà-Adell C; Hernández C; García-Ramírez M; Sampedro J; Simó-Servat O; Valeri M; Pasquali C; Simó R J Diabetes Complications; 2017 Oct; 31(10):1481-1490. PubMed ID: 28847447 [TBL] [Abstract][Full Text] [Related]
10. miR-365 promotes diabetic retinopathy through inhibiting Timp3 and increasing oxidative stress. Wang J; Zhang J; Chen X; Yang Y; Wang F; Li W; Awuti M; Sun Y; Lian C; Li Z; Wang M; Xu JY; Jin C; Tian H; Gao F; Zhang J; Sinha D; Lu L; Xu GT Exp Eye Res; 2018 Mar; 168():89-99. PubMed ID: 29196060 [TBL] [Abstract][Full Text] [Related]
11. The retina: oxidative stress and diabetes. van Reyk DM; Gillies MC; Davies MJ Redox Rep; 2003; 8(4):187-92. PubMed ID: 14599341 [TBL] [Abstract][Full Text] [Related]
12. Conditioned Medium from Early-Outgrowth Bone Marrow Cells Is Retinal Protective in Experimental Model of Diabetes. Duarte DA; Papadimitriou A; Gilbert RE; Thai K; Zhang Y; Rosales MA; Lopes de Faria JB; Lopes de Faria JM PLoS One; 2016; 11(2):e0147978. PubMed ID: 26836609 [TBL] [Abstract][Full Text] [Related]
13. Association between miRNAs expression and signaling pathways of oxidative stress in diabetic retinopathy. Satari M; Aghadavod E; Mobini M; Asemi Z J Cell Physiol; 2019 Jun; 234(6):8522-8532. PubMed ID: 30478922 [TBL] [Abstract][Full Text] [Related]
14. GLP-1 Treatment Improves Diabetic Retinopathy by Alleviating Autophagy through GLP-1R-ERK1/2-HDAC6 Signaling Pathway. Cai X; Li J; Wang M; She M; Tang Y; Li J; Li H; Hui H Int J Med Sci; 2017; 14(12):1203-1212. PubMed ID: 29104476 [No Abstract] [Full Text] [Related]
15. Activation of the Wnt pathway plays a pathogenic role in diabetic retinopathy in humans and animal models. Chen Y; Hu Y; Zhou T; Zhou KK; Mott R; Wu M; Boulton M; Lyons TJ; Gao G; Ma JX Am J Pathol; 2009 Dec; 175(6):2676-85. PubMed ID: 19893025 [TBL] [Abstract][Full Text] [Related]
16. Emerging role of ferroptosis in diabetic retinopathy: a review. Wang R; Rao S; Zhong Z; Xiao K; Chen X; Sun X J Drug Target; 2024 Apr; 32(4):393-403. PubMed ID: 38385350 [TBL] [Abstract][Full Text] [Related]
17. Retinal redox stress and remodeling in cardiometabolic syndrome and diabetes. Yang Y; Hayden MR; Sowers S; Bagree SV; Sowers JR Oxid Med Cell Longev; 2010; 3(6):392-403. PubMed ID: 21307645 [TBL] [Abstract][Full Text] [Related]
18. Alleviate oxidative stress in diabetic retinopathy: antioxidant therapeutic strategies. Gao J; Tao L; Jiang Z Redox Rep; 2023 Dec; 28(1):2272386. PubMed ID: 38041593 [TBL] [Abstract][Full Text] [Related]
19. Alterations to the blood-retinal barrier in diabetes: cytokines and reactive oxygen species. Frey T; Antonetti DA Antioxid Redox Signal; 2011 Sep; 15(5):1271-84. PubMed ID: 21294655 [TBL] [Abstract][Full Text] [Related]
20. Neuroprotective effects of PPARα in retinopathy of type 1 diabetes. Pearsall EA; Cheng R; Matsuzaki S; Zhou K; Ding L; Ahn B; Kinter M; Humphries KM; Quiambao AB; Farjo RA; Ma JX PLoS One; 2019; 14(2):e0208399. PubMed ID: 30716067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]