These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 27420537)

  • 1. Turning on plasmonic lattice modes in metallic nanoantenna arrays via silicon thin films.
    Sadeghi SM; Gutha RR; Wing WJ
    Opt Lett; 2016 Jul; 41(14):3367-70. PubMed ID: 27420537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin-Dependent Emission from Arrays of Planar Chiral Nanoantennas Due to Lattice and Localized Plasmon Resonances.
    Cotrufo M; Osorio CI; Koenderink AF
    ACS Nano; 2016 Mar; 10(3):3389-97. PubMed ID: 26854880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas.
    Giannini V; Vecchi G; Rivas JG
    Phys Rev Lett; 2010 Dec; 105(26):266801. PubMed ID: 21231697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral Surface Lattice Resonances.
    Goerlitzer ESA; Mohammadi R; Nechayev S; Volk K; Rey M; Banzer P; Karg M; Vogel N
    Adv Mater; 2020 Jun; 32(22):e2001330. PubMed ID: 32319171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-Plane Surface Lattice and Higher Order Resonances in Self-Assembled Plasmonic Monolayers: From Substrate-Supported to Free-Standing Thin Films.
    Volk K; Fitzgerald JPS; Karg M
    ACS Appl Mater Interfaces; 2019 May; 11(17):16096-16106. PubMed ID: 30945839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybridization of Lattice Resonances.
    Baur S; Sanders S; Manjavacas A
    ACS Nano; 2018 Feb; 12(2):1618-1629. PubMed ID: 29301081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic Nanoantenna-Based Magnetoplasmonic Crystals for Highly Enhanced and Tunable Magneto-Optical Activity.
    Maccaferri N; Bergamini L; Pancaldi M; Schmidt MK; Kataja M; Dijken Sv; Zabala N; Aizpurua J; Vavassori P
    Nano Lett; 2016 Apr; 16(4):2533-42. PubMed ID: 26967047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays.
    Kataja M; Hakala TK; Julku A; Huttunen MJ; van Dijken S; Törmä P
    Nat Commun; 2015 May; 6():7072. PubMed ID: 25947368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological sensing using hybridization phase of plasmonic resonances with photonic lattice modes in arrays of gold nanoantennas.
    Gutha RR; Sadeghi SM; Sharp C; Wing WJ
    Nanotechnology; 2017 Sep; 28(35):355504. PubMed ID: 28649962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas.
    Vecchi G; Giannini V; Gómez Rivas J
    Phys Rev Lett; 2009 Apr; 102(14):146807. PubMed ID: 19392471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides.
    Murai S; Verschuuren MA; Lozano G; Pirruccio G; Rodriguez SR; Rivas JG
    Opt Express; 2013 Feb; 21(4):4250-62. PubMed ID: 23481959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Doubly resonant optical nanoantenna arrays for polarization resolved measurements of surface-enhanced Raman scattering.
    Petschulat J; Cialla D; Janunts N; Rockstuhl C; Hübner U; Möller R; Schneidewind H; Mattheis R; Popp J; Tünnermann A; Lederer F; Pertsch T
    Opt Express; 2010 Mar; 18(5):4184-97. PubMed ID: 20389431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarization controlled coupling and shaping of surface plasmon polaritons by nanoantenna arrays.
    Avayu O; Epstein I; Eizner E; Ellenbogen T
    Opt Lett; 2015 Apr; 40(7):1520-3. PubMed ID: 25831374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects.
    Nikitin AG; Kabashin AV; Dallaporta H
    Opt Express; 2012 Dec; 20(25):27941-52. PubMed ID: 23262740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrahigh Brightening of Infrared PbS Quantum Dots via Collective Energy Transfer Induced by a Metal-Oxide Plasmonic Metastructure.
    Sadeghi SM; Gutha RR; Hatef A; Goul R; Wu JZ
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11913-11921. PubMed ID: 32083841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From localized to delocalized plasmonic modes, first observation of superradiant scattering in disordered semi-continuous metal films.
    Berthelot A; des Francs GC; Varguet H; Margueritat J; Mascart R; Benoit JM; Laverdant J
    Nanotechnology; 2019 Jan; 30(1):015706. PubMed ID: 30370901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong Exciton-Plasmon Coupling in MoS2 Coupled with Plasmonic Lattice.
    Liu W; Lee B; Naylor CH; Ee HS; Park J; Johnson AT; Agarwal R
    Nano Lett; 2016 Feb; 16(2):1262-9. PubMed ID: 26784532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dispersion of polarization coupling, localized and collective plasmon modes in a metallic photonic crystal mapped by Mueller Matrix Ellipsometry.
    Brakstad T; Kildemo M; Ghadyani Z; Simonsen I
    Opt Express; 2015 Aug; 23(17):22800-15. PubMed ID: 26368248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping.
    Gao T; Stevens E; Lee JK; Leu PW
    Opt Lett; 2014 Aug; 39(16):4647-50. PubMed ID: 25121839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.