These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 27420562)

  • 1. Extrapolating Single Organic Ion Solvation Thermochemistry from Simulated Water Nanodroplets.
    Coles JP; Houriez C; Meot-Ner Mautner M; Masella M
    J Phys Chem B; 2016 Sep; 120(35):9402-9. PubMed ID: 27420562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulated solvation of organic ions: protonated methylamines in water nanodroplets. Convergence toward bulk properties and the absolute proton solvation enthalpy.
    Houriez C; Meot-Ner Mautner M; Masella M
    J Phys Chem B; 2014 Jun; 118(23):6222-33. PubMed ID: 24814657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion solvation thermodynamics from simulation with a polarizable force field.
    Grossfield A; Ren P; Ponder JW
    J Am Chem Soc; 2003 Dec; 125(50):15671-82. PubMed ID: 14664617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulated Solvation of Organic Ions II: Study of Linear Alkylated Carboxylate Ions in Water Nanodrops and in Liquid Water. Propensity for Air/Water Interface and Convergence to Bulk Solvation Properties.
    Houriez C; Meot-Ner Mautner M; Masella M
    J Phys Chem B; 2015 Sep; 119(36):12094-107. PubMed ID: 26287943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic ion association in aqueous phase and ab initio-based force fields: The case of carboxylate/ammonium salts.
    Houriez C; Vallet V; Réal F; Meot-Ner Mautner M; Masella M
    J Chem Phys; 2017 Oct; 147(16):161720. PubMed ID: 29096445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational design of ion force fields based on thermodynamic solvation properties.
    Horinek D; Mamatkulov SI; Netz RR
    J Chem Phys; 2009 Mar; 130(12):124507. PubMed ID: 19334851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges.
    Marenich AV; Olson RM; Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2007 Nov; 3(6):2011-33. PubMed ID: 26636198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin of Asymmetric Solvation Effects for Ions in Water and Organic Solvents Investigated Using Molecular Dynamics Simulations: The Swain Acity-Basity Scale Revisited.
    Reif MM; Hünenberger PH
    J Phys Chem B; 2016 Aug; 120(33):8485-517. PubMed ID: 27173101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Halothane solvation in water and organic solvents from molecular simulations with new polarizable potential function.
    Subbotina JO; Johannes J; Lev B; Noskov SY
    J Phys Chem B; 2010 May; 114(19):6401-8. PubMed ID: 20411978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational investigation of the first solvation shell structure of interfacial and bulk aqueous chloride and iodide ions.
    Wick CD; Xantheas SS
    J Phys Chem B; 2009 Apr; 113(13):4141-6. PubMed ID: 19014185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a methodology to compute solvation free energies on the basis of the theory of energy representation for solutions represented with a polarizable force field.
    Suzuoka D; Takahashi H; Ishiyama T; Morita A
    J Chem Phys; 2012 Dec; 137(21):214503. PubMed ID: 23231247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion hydration free energies and water surface potential in water nano drops: The cluster pair approximation and the proton hydration Gibbs free energy in solution.
    Houriez C; Réal F; Vallet V; Mautner M; Masella M
    J Chem Phys; 2019 Nov; 151(17):174504. PubMed ID: 31703526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of ion hydration on the sign of the ion's charge.
    Grossfield A
    J Chem Phys; 2005 Jan; 122(2):024506. PubMed ID: 15638597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ejection of solvated ions from electrosprayed methanol/water nanodroplets studied by molecular dynamics simulations.
    Ahadi E; Konermann L
    J Am Chem Soc; 2011 Jun; 133(24):9354-63. PubMed ID: 21591733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An extended aqueous solvation model based on atom-weighted solvent accessible surface areas: SAWSA v2.0 model.
    Hou T; Zhang W; Huang Q; Xu X
    J Mol Model; 2005 Feb; 11(1):26-40. PubMed ID: 15565273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydration free energies of monovalent ions in transferable intermolecular potential four point fluctuating charge water: an assessment of simulation methodology and force field performance and transferability.
    Warren GL; Patel S
    J Chem Phys; 2007 Aug; 127(6):064509. PubMed ID: 17705614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dragging of polarizable nanodroplets by distantly solvated ions.
    Wang B; Král P
    Phys Rev Lett; 2008 Jul; 101(4):046103. PubMed ID: 18764342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free energy of transfer of hydrated ion clusters from water to an immiscible organic solvent.
    Rose D; Benjamin I
    J Phys Chem B; 2009 Jul; 113(27):9296-303. PubMed ID: 19534541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton.
    Kelly CP; Cramer CJ; Truhlar DG
    J Phys Chem B; 2006 Aug; 110(32):16066-81. PubMed ID: 16898764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computations of Absolute Solvation Free Energies of Small Molecules Using Explicit and Implicit Solvent Model.
    Shivakumar D; Deng Y; Roux B
    J Chem Theory Comput; 2009 Apr; 5(4):919-30. PubMed ID: 26609601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.