BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27420625)

  • 1. [Mitochondria, calcium homeostasis and calcium signaling].
    Zavodnik IB
    Biomed Khim; 2016 Mar; 62(3):311-7. PubMed ID: 27420625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. THE CORRELATION OF THE CHEMICAL COMPOSITION OF ENAMEL AND ORAL FLUID IN PATIENTS WITH A WEDGE-SHAPED DEFECT AND INTACT TEETH.
    Yarova S; Zabolotna I; Genzytska O; Yarov Y; Makhnova A
    Georgian Med News; 2020 Dec; (309):37-42. PubMed ID: 33526727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca(2+)-dependent regulation of the Ca(2+) concentration in the myometrium mitochondria. I. Trifluoperazine effects on mitochondria membranes polarization and [Ca(2+)](m).
    Babich LG; Shlykov SG; Kushnarova AM; Kosterin SO
    Ukr Biochem J; 2016; 88(4):5-11. PubMed ID: 29235339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The destiny of Ca(2+) released by mitochondria.
    Takeuchi A; Kim B; Matsuoka S
    J Physiol Sci; 2015 Jan; 65(1):11-24. PubMed ID: 24994533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights into the role of mitochondrial calcium homeostasis in cell migration.
    Paupe V; Prudent J
    Biochem Biophys Res Commun; 2018 May; 500(1):75-86. PubMed ID: 28495532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angiotensin II activates different calcium signaling pathways in adipocytes.
    Dolgacheva LP; Turovskaya MV; Dynnik VV; Zinchenko VP; Goncharov NV; Davletov B; Turovsky EA
    Arch Biochem Biophys; 2016 Mar; 593():38-49. PubMed ID: 26850364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium uptake mechanisms of mitochondria.
    Santo-Domingo J; Demaurex N
    Biochim Biophys Acta; 2010; 1797(6-7):907-12. PubMed ID: 20079335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective inhibition of smooth muscle plasma membrane transport Са2+,Mg2+-АТРase by calixarene C-90 and its activation by IPT-35 compound.
    Mazur II; Veklich TO; Shkrabak OA; Mohart NA; Demchenko AM; Gerashchenko IV; Rodik RV; Kalchenko VI; Kosterin SO
    Gen Physiol Biophys; 2018 Mar; 37(2):223-231. PubMed ID: 29593128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attenuation of calmodulin regulation evokes Ca
    Turovsky EA; Zinchenko VP; Kaimachnikov NP
    Mol Cell Biochem; 2019 Jun; 456(1-2):191-204. PubMed ID: 30756222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial Ca2+ Transport: Mechanisms, Molecular Structures, and Role in Cells.
    Belosludtsev KN; Dubinin MV; Belosludtseva NV; Mironova GD
    Biochemistry (Mosc); 2019 Jun; 84(6):593-607. PubMed ID: 31238859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of sphingosine and its derivatives in the regulation of Ca2+ homeostasis.
    Vekshina M
    Membr Cell Biol; 2001; 14(4):429-61. PubMed ID: 11497100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection.
    Zündorf G; Reiser G
    Antioxid Redox Signal; 2011 Apr; 14(7):1275-88. PubMed ID: 20615073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of Ca2+ homeostasis in neuronal cells.
    Racay P; Kaplán P; Lehotský J
    Gen Physiol Biophys; 1996 Jun; 15(3):193-210. PubMed ID: 9076503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of mitochondrial Ca2+ transport mediated by three transport proteins: VDAC1, the Na+/Ca2+ exchanger, and the Ca2+ uniporter.
    Ben-Hail D; Palty R; Shoshan-Barmatz V
    Cold Spring Harb Protoc; 2014 Feb; 2014(2):161-6. PubMed ID: 24492769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dominant role of mitochondria in calcium homeostasis of single rat pituitary corticotropes.
    Lee AK; Tse A
    Endocrinology; 2005 Nov; 146(11):4985-93. PubMed ID: 16081644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mitochondrial calcium uniporter is a highly selective ion channel.
    Kirichok Y; Krapivinsky G; Clapham DE
    Nature; 2004 Jan; 427(6972):360-4. PubMed ID: 14737170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondria as all-round players of the calcium game.
    Rizzuto R; Bernardi P; Pozzan T
    J Physiol; 2000 Nov; 529 Pt 1(Pt 1):37-47. PubMed ID: 11080249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The regulation of OXPHOS by extramitochondrial calcium.
    Gellerich FN; Gizatullina Z; Trumbeckaite S; Nguyen HP; Pallas T; Arandarcikaite O; Vielhaber S; Seppet E; Striggow F
    Biochim Biophys Acta; 2010; 1797(6-7):1018-27. PubMed ID: 20144582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of amixin and agmatine on cytochrome C release from isolated mitochondria.
    Uspenska KR; Gergalova GL; Lykhmus OY; Skok MV
    Ukr Biochem J; 2016; 88(1):5-10. PubMed ID: 29227073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of preparations Methyure and Ivine on Са(2+)-ATPases activity in plasma and vacuolar membrane of corn seedling roots under salt stress conditions.
    Rudnytska MV; Palladina TA
    Ukr Biochem J; 2017; 89(1):76-81. PubMed ID: 29236392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.