These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27420800)

  • 1. Transfer matrix approach for the Kerr and Faraday rotation in layered nanostructures.
    Széchenyi G; Vigh M; Kormányos A; Cserti J
    J Phys Condens Matter; 2016 Sep; 28(37):375802. PubMed ID: 27420800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for eliminating Faraday rotation in cryostat windows in longitudinal magneto-optical Kerr effect measurements.
    Polewko-Klim A; Uba S; Uba L
    Rev Sci Instrum; 2014 Jul; 85(7):073106. PubMed ID: 25085126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Giant Faraday and Kerr rotation with strained graphene.
    Martinez JC; Jalil MB; Tan SG
    Opt Lett; 2012 Aug; 37(15):3237-9. PubMed ID: 22859144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Faraday and Kerr rotations in graphene.
    Shimano R; Yumoto G; Yoo JY; Matsunaga R; Tanabe S; Hibino H; Morimoto T; Aoki H
    Nat Commun; 2013; 4():1841. PubMed ID: 23673626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Giant Faraday rotation in atomically thin semiconductors.
    Carey B; Wessling NK; Steeger P; Schmidt R; Michaelis de Vasconcellos S; Bratschitsch R; Arora A
    Nat Commun; 2024 Apr; 15(1):3082. PubMed ID: 38600090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state.
    Okada KN; Takahashi Y; Mogi M; Yoshimi R; Tsukazaki A; Takahashi KS; Ogawa N; Kawasaki M; Tokura Y
    Nat Commun; 2016 Jul; 7():12245. PubMed ID: 27436710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable optical and magneto-optical Faraday and Kerr rotations in a dielectric slab doped with double-V type atoms.
    Vafafard A; Sahrai M
    Sci Rep; 2020 May; 10(1):8544. PubMed ID: 32444856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory of Kerr and Faraday rotations and linear dichroism in Topological Weyl Semimetals.
    Kargarian M; Randeria M; Trivedi N
    Sci Rep; 2015 Aug; 5():12683. PubMed ID: 26235120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of optical properties of layered metallic nanoparticles embedded inside dielectric matrices: interference method or Maxwell Garnett effective-medium theory?
    Protopapa ML
    Appl Opt; 2010 Jun; 49(16):3014-24. PubMed ID: 20517370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and numerical study of the nonlinear response of optical multilayers.
    Amotchkina T; Trubetskov M; Pervak V
    Opt Express; 2017 May; 25(11):12675-12688. PubMed ID: 28786622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New method of second quantization of the strained-graphene Kerr and Faraday rotations.
    Boonchui S; Nualpijit P
    Opt Express; 2019 Sep; 27(20):28350-28363. PubMed ID: 31684588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of magneto-optical Kerr effect by surface plasmons in trilayer structure consisting of double-layer dielectrics and ferromagnetic metal.
    Kaihara T; Ando T; Shimizu H; Zayets V; Saito H; Ando K; Yuasa S
    Opt Express; 2015 May; 23(9):11537-55. PubMed ID: 25969248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators.
    Tse WK; MacDonald AH
    Phys Rev Lett; 2010 Jul; 105(5):057401. PubMed ID: 20867952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of Faraday and Kerr rotations in three-layer heterostructure with extraordinary optical transmission effect.
    Dmitriev V; Paixão F; Kawakatsu M
    Opt Lett; 2013 Apr; 38(7):1052-4. PubMed ID: 23546240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polar Kerr effect and time reversal symmetry breaking in bilayer graphene.
    Nandkishore R; Levitov L
    Phys Rev Lett; 2011 Aug; 107(9):097402. PubMed ID: 21929269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Terahertz optical bistability of graphene in thin layers of dielectrics.
    Ahn KJ; Rotermund F
    Opt Express; 2017 Apr; 25(8):8484-8490. PubMed ID: 28437928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of birefringence for optical recording of disk substrates.
    Fu H; Sugaya S; Erwin JK; Mansuripur M
    Appl Opt; 1994 Apr; 33(10):1938-49. PubMed ID: 20885528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems.
    Belotelov VI; Doskolovich LL; Zvezdin AK
    Phys Rev Lett; 2007 Feb; 98(7):077401. PubMed ID: 17359058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Faraday rotation in bilayer graphene-based integrated microcavity.
    Da HX; Yan XH
    Opt Lett; 2016 Jan; 41(1):151-4. PubMed ID: 26696181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spin Hall effect of reflected light in dielectric magneto-optical thin film with a double-negative metamaterial substrate.
    Li J; Tang T; Luo L; Li N; Zhang P
    Opt Express; 2017 Aug; 25(16):19117-19128. PubMed ID: 29041105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.