These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 27420809)
1. Competition of static magnetic and dynamic photon forces in electronic transport through a quantum dot. Rauf Abdullah N; Tang CS; Manolescu A; Gudmundsson V J Phys Condens Matter; 2016 Sep; 28(37):375301. PubMed ID: 27420809 [TBL] [Abstract][Full Text] [Related]
2. Coupling-barrier and non-parabolicity effects on the conduction electron cyclotron effective mass and Landé [Formula: see text] factor in GaAs double quantum wells. Darío Perea J; Mejía-Salazar JR; Porras-Montenegro N J Phys Condens Matter; 2011 Feb; 23(6):065303. PubMed ID: 21406924 [TBL] [Abstract][Full Text] [Related]
3. Electron transport through a quantum dot assisted by cavity photons. Abdullah NR; Tang CS; Manolescu A; Gudmundsson V J Phys Condens Matter; 2013 Nov; 25(46):465302. PubMed ID: 24132041 [TBL] [Abstract][Full Text] [Related]
4. Quasiparticle states of on-demand coherent electron sources. Yin Y J Phys Condens Matter; 2019 Jun; 31(24):245301. PubMed ID: 30870815 [TBL] [Abstract][Full Text] [Related]
5. Thermoelectric Inversion in a Resonant Quantum Dot-Cavity System in the Steady-State Regime. Abdullah NR; Tang CS; Manolescu A; Gudmundsson V Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31091757 [TBL] [Abstract][Full Text] [Related]
6. Transport properties through graphene with sequence of alternative magnetic barriers and wells in the presence of time-periodic scalar potential. Pakdel F; Maleki MA Sci Rep; 2021 Jun; 11(1):13293. PubMed ID: 34168193 [TBL] [Abstract][Full Text] [Related]
7. Quantum vortex melting and superconductor insulator transition in a 2D Josephson junction array in a perpendicular magnetic field via diffusion Monte Carlo. Karki P; Loh YL J Phys Condens Matter; 2018 Sep; 30(38):385901. PubMed ID: 30117436 [TBL] [Abstract][Full Text] [Related]
8. Investigation of the magnetic dipole field at the atomic scale in quasi-one-dimensional paramagnetic conductor Li0.9Mo6O17. Wu G; Ye XS; Zeng X; Wu B; Clark WG J Phys Condens Matter; 2016 Jan; 28(1):015003. PubMed ID: 26571041 [TBL] [Abstract][Full Text] [Related]
9. Robust effective Zeeman energy in monolayer MoS2 quantum dots. Dias AC; Fu J; Villegas-Lelovsky L; Qu F J Phys Condens Matter; 2016 Sep; 28(37):375803. PubMed ID: 27421077 [TBL] [Abstract][Full Text] [Related]
10. Quantum interference induced photon blockade in a coupled single quantum dot-cavity system. Tang J; Geng W; Xu X Sci Rep; 2015 Mar; 5():9252. PubMed ID: 25783560 [TBL] [Abstract][Full Text] [Related]
11. Effect of doping on lattice dynamics and electron-phonon coupling of the actinides Ac-Th alloy. de Coss-Martínez R; González-Castelazo P; De la Peña-Seaman O; Heid R; Bohnen KP J Phys Condens Matter; 2017 Sep; 29(35):355401. PubMed ID: 28653960 [TBL] [Abstract][Full Text] [Related]
12. Manifestation of the Purcell Effect in Current Transport through a Dot-Cavity-QED System. Abdullah NR; Tang CS; Manolescu A; Gudmundsson V Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31319544 [TBL] [Abstract][Full Text] [Related]
14. Aggregate frequency width, nuclear hyperfine coupling and Jahn-Teller effect of Cu Hosain MA; Le Floch JM; Krupka J; Tobar ME J Phys Condens Matter; 2018 Jan; 30(1):015802. PubMed ID: 29130900 [TBL] [Abstract][Full Text] [Related]
15. Quantum confinement and magnetic-field effects on the electron g factor in GaAs-(Ga, Al)As cylindrical quantum dots. Mejía-Salazar JR; Porras-Montenegro N; Oliveira LE J Phys Condens Matter; 2009 Nov; 21(45):455302. PubMed ID: 21694007 [TBL] [Abstract][Full Text] [Related]
16. Coherent transient transport of interacting electrons through a quantum waveguide switch. Abdullah NR; Tang CS; Manolescu A; Gudmundsson V J Phys Condens Matter; 2015 Jan; 27(1):015301. PubMed ID: 25425564 [TBL] [Abstract][Full Text] [Related]
17. Electronic and dynamical properties of non-covalent diatomic aggregates formed by He with neutral and ionic Li and Be. de Jesus GCC; Costa CVS; de Macedo LGM; de Oliveira Neto PH; Pirani F; Gargano R J Mol Model; 2023 May; 29(6):190. PubMed ID: 37249738 [TBL] [Abstract][Full Text] [Related]
18. The effect of magnetic field and disorders on the electronic transport in graphene nanoribbons. Kumar SB; Jalil MB; Tan SG; Liang G J Phys Condens Matter; 2010 Sep; 22(37):375303. PubMed ID: 21403192 [TBL] [Abstract][Full Text] [Related]