These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 27421077)

  • 1. Robust effective Zeeman energy in monolayer MoS2 quantum dots.
    Dias AC; Fu J; Villegas-Lelovsky L; Qu F
    J Phys Condens Matter; 2016 Sep; 28(37):375803. PubMed ID: 27421077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolving the spin splitting in the conduction band of monolayer MoS
    Marinov K; Avsar A; Watanabe K; Taniguchi T; Kis A
    Nat Commun; 2017 Dec; 8(1):1938. PubMed ID: 29209021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum confinement and magnetic-field effects on the electron g factor in GaAs-(Ga, Al)As cylindrical quantum dots.
    Mejía-Salazar JR; Porras-Montenegro N; Oliveira LE
    J Phys Condens Matter; 2009 Nov; 21(45):455302. PubMed ID: 21694007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust tunable excitonic features in monolayer transition metal dichalcogenide quantum dots.
    Fouladi-Oskouei J; Shojaei S; Liu Z
    J Phys Condens Matter; 2018 Apr; 30(14):145301. PubMed ID: 29460851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Valley Zeeman Splitting in Fe-Doped Monolayer MoS
    Li Q; Zhao X; Deng L; Shi Z; Liu S; Wei Q; Zhang L; Cheng Y; Zhang L; Lu H; Gao W; Huang W; Qiu CW; Xiang G; Pennycook SJ; Xiong Q; Loh KP; Peng B
    ACS Nano; 2020 Apr; 14(4):4636-4645. PubMed ID: 32167276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zeeman splitting via spin-valley-layer coupling in bilayer MoTe
    Jiang C; Liu F; Cuadra J; Huang Z; Li K; Rasmita A; Srivastava A; Liu Z; Gao WB
    Nat Commun; 2017 Oct; 8(1):802. PubMed ID: 28986559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining Interaction Enhanced Valley Susceptibility in Spin-Valley-Locked MoS
    Lin J; Han T; Piot BA; Wu Z; Xu S; Long G; An L; Cheung P; Zheng PP; Plochocka P; Dai X; Maude DK; Zhang F; Wang N
    Nano Lett; 2019 Mar; 19(3):1736-1742. PubMed ID: 30720286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting.
    Yang CH; Rossi A; Ruskov R; Lai NS; Mohiyaddin FA; Lee S; Tahan C; Klimeck G; Morello A; Dzurak AS
    Nat Commun; 2013; 4():2069. PubMed ID: 23804134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Spectroscopic Evidence of Magnetic Proximity Effect in MoS
    Voroshnin V; Tarasov AV; Bokai KA; Chikina A; Senkovskiy BV; Ehlen N; Usachov DY; Grüneis A; Krivenkov M; Sánchez-Barriga J; Fedorov A
    ACS Nano; 2022 May; 16(5):7448-7456. PubMed ID: 35442015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spin polarization and tunable valley degeneracy in a MoS
    Zhang K; Wang L; Wu X
    Nanoscale; 2019 Nov; 11(41):19536-19542. PubMed ID: 31576895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2.
    Li Y; Ludwig J; Low T; Chernikov A; Cui X; Arefe G; Kim YD; van der Zande AM; Rigosi A; Hill HM; Kim SH; Hone J; Li Z; Smirnov D; Heinz TF
    Phys Rev Lett; 2014 Dec; 113(26):266804. PubMed ID: 25615372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Edge modes in zigzag and armchair ribbons of monolayer MoS
    Rostami H; Asgari R; Guinea F
    J Phys Condens Matter; 2016 Dec; 28(49):495001. PubMed ID: 27731311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competition of static magnetic and dynamic photon forces in electronic transport through a quantum dot.
    Rauf Abdullah N; Tang CS; Manolescu A; Gudmundsson V
    J Phys Condens Matter; 2016 Sep; 28(37):375301. PubMed ID: 27420809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla.
    Stier AV; McCreary KM; Jonker BT; Kono J; Crooker SA
    Nat Commun; 2016 Feb; 7():10643. PubMed ID: 26856412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling-barrier and non-parabolicity effects on the conduction electron cyclotron effective mass and Landé [Formula: see text] factor in GaAs double quantum wells.
    Darío Perea J; Mejía-Salazar JR; Porras-Montenegro N
    J Phys Condens Matter; 2011 Feb; 23(6):065303. PubMed ID: 21406924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning and identification of interband transitions in monolayer and bilayer molybdenum disulfide using hydrostatic pressure.
    Dou X; Ding K; Jiang D; Sun B
    ACS Nano; 2014 Jul; 8(7):7458-64. PubMed ID: 24988279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confinement of Dirac electrons in graphene magnetic quantum dots.
    Kuru Ş; Negro J; Sourrouille L
    J Phys Condens Matter; 2018 Sep; 30(36):365502. PubMed ID: 30051888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optically active quantum dots in monolayer WSe2.
    Srivastava A; Sidler M; Allain AV; Lembke DS; Kis A; Imamoğlu A
    Nat Nanotechnol; 2015 Jun; 10(6):491-6. PubMed ID: 25938570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spin and valley-dependent electron transport through arrays of ferromagnet on monolayer MoS
    Qiu XJ; Cao ZZ; Cheng YF; Qin CC
    J Phys Condens Matter; 2017 Mar; 29(10):105301. PubMed ID: 28075334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.