These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 27421084)

  • 1. Characterizing microcrack orientation distribution functions in osteonal bone samples.
    Wolfram U; Schwiedrzik JJ; Mirzaali MJ; Bürki A; Varga P; Olivier C; Peyrin F; Zysset PK
    J Microsc; 2016 Dec; 264(3):268-281. PubMed ID: 27421084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal characterization of microdamage accumulation in rat ulnae in response to uniaxial compressive fatigue loading.
    Zhang X; Liu X; Yan Z; Cai J; Kang F; Shan S; Wang P; Zhai M; Edward Guo X; Luo E; Jing D
    Bone; 2018 Mar; 108():156-164. PubMed ID: 29331298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between damage accumulation and mechanical property degradation in cortical bone: microcrack orientation is important.
    Akkus O; Knott DF; Jepsen KJ; Davy DT; Rimnac CM
    J Biomed Mater Res A; 2003 Jun; 65(4):482-8. PubMed ID: 12761839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-lapsed assessment of microcrack initiation and propagation in murine cortical bone at submicrometer resolution.
    Voide R; Schneider P; Stauber M; Wyss P; Stampanoni M; Sennhauser U; van Lenthe GH; Müller R
    Bone; 2009 Aug; 45(2):164-73. PubMed ID: 19410668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micromechanics fracture in osteonal cortical bone: a study of the interactions between microcrack propagation, microstructure and the material properties.
    Najafi AR; Arshi AR; Eslami MR; Fariborz S; Moeinzadeh MH
    J Biomech; 2007; 40(12):2788-95. PubMed ID: 17376454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axial-shear interaction effects on microdamage in bovine tibial trabecular bone.
    Wang X; Guyette J; Liu X; Roeder RK; Niebur GL
    Eur J Morphol; 2005; 42(1-2):61-70. PubMed ID: 16123025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contrast-enhanced micro-computed tomography of fatigue microdamage accumulation in human cortical bone.
    Landrigan MD; Li J; Turnbull TL; Burr DB; Niebur GL; Roeder RK
    Bone; 2011 Mar; 48(3):443-50. PubMed ID: 20951850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchrotron radiation micro-CT at the micrometer scale for the analysis of the three-dimensional morphology of microcracks in human trabecular bone.
    Larrue A; Rattner A; Peter ZA; Olivier C; Laroche N; Vico L; Peyrin F
    PLoS One; 2011; 6(7):e21297. PubMed ID: 21750707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue microcracks that initiate fracture are located near elevated intracortical porosity but not elevated mineralization.
    Turnbull TL; Baumann AP; Roeder RK
    J Biomech; 2014 Sep; 47(12):3135-42. PubMed ID: 25065731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non destructive characterization of cortical bone micro-damage by nonlinear resonant ultrasound spectroscopy.
    Haupert S; Guérard S; Peyrin F; Mitton D; Laugier P
    PLoS One; 2014; 9(1):e83599. PubMed ID: 24392089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microcrack frequency and bone remodeling in postmenopausal osteoporotic women on long-term bisphosphonates: a bone biopsy study.
    Chapurlat RD; Arlot M; Burt-Pichat B; Chavassieux P; Roux JP; Portero-Muzy N; Delmas PD
    J Bone Miner Res; 2007 Oct; 22(10):1502-9. PubMed ID: 17824840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical bone tissue resists fatigue fracture by deceleration and arrest of microcrack growth.
    Akkus O; Rimnac CM
    J Biomech; 2001 Jun; 34(6):757-64. PubMed ID: 11470113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the lamellar interface during torsional yielding of human cortical bone.
    Jepsen KJ; Davy DT; Krzypow DJ
    J Biomech; 1999 Mar; 32(3):303-10. PubMed ID: 10093030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Distribution of Microcracks in Osteoarthritic Femoral Neck: Influence of Osteophytes on Microcrack Formation.
    Rabelo GD; Portero-Muzy N; Gineyts E; Roux JP; Chapurlat R; Chavassieux P
    Calcif Tissue Int; 2018 Dec; 103(6):617-624. PubMed ID: 30022227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of in-vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone.
    Zioupos P
    J Microsc; 2001 Feb; 201(2):270-278. PubMed ID: 11207929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On sampling bones for microcracks.
    Martin RB; Yeh OC; Fyhrie DP
    Bone; 2007 Apr; 40(4):1159-65. PubMed ID: 17223399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fiber-ceramic matrix composite material model for osteonal cortical bone fracture micromechanics: solution of arbitrary microcracks interaction.
    Raeisi Najafi A; Arshi AR; Saffar KP; Eslami MR; Fariborz S; Moeinzadeh MH
    J Mech Behav Biomed Mater; 2009 Jul; 2(3):217-23. PubMed ID: 19627826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The behaviour of microcracks in compact bone.
    O'brien FJ; Hardiman DA; Hazenberg JG; Mercy MV; Mohsin S; Taylor D; Lee TC
    Eur J Morphol; 2005; 42(1-2):71-9. PubMed ID: 16123026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-lapsed investigation of three-dimensional failure and damage accumulation in trabecular bone using synchrotron light.
    Thurner PJ; Wyss P; Voide R; Stauber M; Stampanoni M; Sennhauser U; Müller R
    Bone; 2006 Aug; 39(2):289-99. PubMed ID: 16540385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of damage morphology on cortical bone fragility.
    Diab T; Vashishth D
    Bone; 2005 Jul; 37(1):96-102. PubMed ID: 15897021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.