BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 27421111)

  • 1. Reduced paucimannosidic N-glycan formation by suppression of a specific β-hexosaminidase from Nicotiana benthamiana.
    Shin YJ; Castilho A; Dicker M; Sádio F; Vavra U; Grünwald-Gruber C; Kwon TH; Altmann F; Steinkellner H; Strasser R
    Plant Biotechnol J; 2017 Feb; 15(2):197-206. PubMed ID: 27421111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic properties and subcellular localization of Arabidopsis beta-N-acetylhexosaminidases.
    Strasser R; Bondili JS; Schoberer J; Svoboda B; Liebminger E; Glössl J; Altmann F; Steinkellner H; Mach L
    Plant Physiol; 2007 Sep; 145(1):5-16. PubMed ID: 17644627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beta-N-acetylhexosaminidases HEXO1 and HEXO3 are responsible for the formation of paucimannosidic N-glycans in Arabidopsis thaliana.
    Liebminger E; Veit C; Pabst M; Batoux M; Zipfel C; Altmann F; Mach L; Strasser R
    J Biol Chem; 2011 Mar; 286(12):10793-802. PubMed ID: 21252225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteolytic and N-glycan processing of human α1-antitrypsin expressed in Nicotiana benthamiana.
    Castilho A; Windwarder M; Gattinger P; Mach L; Strasser R; Altmann F; Steinkellner H
    Plant Physiol; 2014 Dec; 166(4):1839-51. PubMed ID: 25355867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BGAL1 depletion boosts the level of β-galactosylation of N- and O-glycans in N. benthamiana.
    Kriechbaum R; Ziaee E; Grünwald-Gruber C; Buscaill P; van der Hoorn RAL; Castilho A
    Plant Biotechnol J; 2020 Jul; 18(7):1537-1549. PubMed ID: 31837192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deletion of plant-specific sugar residues in plant N-glycans by repression of GDP-D-mannose 4,6-dehydratase and β-1,2-xylosyltransferase genes.
    Matsuo K; Kagaya U; Itchoda N; Tabayashi N; Matsumura T
    J Biosci Bioeng; 2014 Oct; 118(4):448-54. PubMed ID: 24794851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The production of human glucocerebrosidase in glyco-engineered Nicotiana benthamiana plants.
    Limkul J; Iizuka S; Sato Y; Misaki R; Ohashi T; Ohashi T; Fujiyama K
    Plant Biotechnol J; 2016 Aug; 14(8):1682-94. PubMed ID: 26868756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9-mediated knockout of six glycosyltransferase genes in Nicotiana benthamiana for the production of recombinant proteins lacking β-1,2-xylose and core α-1,3-fucose.
    Jansing J; Sack M; Augustine SM; Fischer R; Bortesi L
    Plant Biotechnol J; 2019 Feb; 17(2):350-361. PubMed ID: 29969180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion of fucose residues in plant N-glycans by repression of the GDP-mannose 4,6-dehydratase gene using virus-induced gene silencing and RNA interference.
    Matsuo K; Matsumura T
    Plant Biotechnol J; 2011 Feb; 9(2):264-81. PubMed ID: 20731789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of plants expressing the human β1,4-galactosyltrasferase gene.
    Schneider J; Castilho A; Pabst M; Altmann F; Gruber C; Strasser R; Gattinger P; Seifert GJ; Steinkellner H
    Plant Physiol Biochem; 2015 Jul; 92():39-47. PubMed ID: 25900423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-glycosylation engineering of plants for the biosynthesis of glycoproteins with bisected and branched complex N-glycans.
    Castilho A; Gattinger P; Grass J; Jez J; Pabst M; Altmann F; Gorfer M; Strasser R; Steinkellner H
    Glycobiology; 2011 Jun; 21(6):813-23. PubMed ID: 21317243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. β-Hexosaminidases Along the Secretory Pathway of
    Alvisi N; van Noort K; Dwiani S; Geschiere N; Sukarta O; Varossieau K; Nguyen DL; Strasser R; Hokke CH; Schots A; Wilbers RHP
    Front Plant Sci; 2021; 12():638454. PubMed ID: 33815445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of recombinant β-glucocerebrosidase in wild-type and glycoengineered transgenic Nicotiana benthamiana root cultures with different N-glycan profiles.
    Uthailak N; Kajiura H; Misaki R; Fujiyama K
    J Biosci Bioeng; 2022 May; 133(5):481-488. PubMed ID: 35190260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplexed, targeted gene editing in Nicotiana benthamiana for glyco-engineering and monoclonal antibody production.
    Li J; Stoddard TJ; Demorest ZL; Lavoie PO; Luo S; Clasen BM; Cedrone F; Ray EE; Coffman AP; Daulhac A; Yabandith A; Retterath AJ; Mathis L; Voytas DF; D'Aoust MA; Zhang F
    Plant Biotechnol J; 2016 Feb; 14(2):533-42. PubMed ID: 26011187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of complex multiantennary N-glycans in Nicotiana benthamiana plants.
    Nagels B; Van Damme EJ; Pabst M; Callewaert N; Weterings K
    Plant Physiol; 2011 Mar; 155(3):1103-12. PubMed ID: 21233332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The two endo-β-N-acetylglucosaminidase genes from Arabidopsis thaliana encode cytoplasmic enzymes controlling free N-glycan levels.
    Fischl RM; Stadlmann J; Grass J; Altmann F; Léonard R
    Plant Mol Biol; 2011 Oct; 77(3):275-84. PubMed ID: 21796445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure.
    Strasser R; Stadlmann J; Schähs M; Stiegler G; Quendler H; Mach L; Glössl J; Weterings K; Pabst M; Steinkellner H
    Plant Biotechnol J; 2008 May; 6(4):392-402. PubMed ID: 18346095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of rat beta(1,4)-N-acetylglucosaminyltransferase III in Nicotiana tabacum remodels the plant-specific N-glycosylation.
    Frey AD; Karg SR; Kallio PT
    Plant Biotechnol J; 2009 Jan; 7(1):33-48. PubMed ID: 18778316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The N-glycan on Asn54 affects the atypical N-glycan composition of plant-produced interleukin-22, but does not influence its activity.
    Wilbers RH; Westerhof LB; Reuter LJ; Castilho A; van Raaij DR; Nguyen DL; Lozano-Torres JL; Smant G; Hokke CH; Bakker J; Schots A
    Plant Biotechnol J; 2016 Feb; 14(2):670-81. PubMed ID: 26059044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane anchors effectively traffic recombinant human glucocerebrosidase to the protein storage vacuole of Arabidopsis seeds but do not adequately control N-glycan maturation.
    He X; Galpin JD; Miao Y; Jiang L; Grabowski GA; Kermode AR
    Plant Cell Rep; 2014 Dec; 33(12):2023-32. PubMed ID: 25187293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.