These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 27421896)

  • 1. Brain region-specific effects of cGMP-dependent kinase II knockout on AMPA receptor trafficking and animal behavior.
    Kim S; Pick JE; Abera S; Khatri L; Ferreira DD; Sathler MF; Morison SL; Hofmann F; Ziff EB
    Learn Mem; 2016 Aug; 23(8):435-41. PubMed ID: 27421896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network compensation of cyclic GMP-dependent protein kinase II knockout in the hippocampus by Ca2+-permeable AMPA receptors.
    Kim S; Titcombe RF; Zhang H; Khatri L; Girma HK; Hofmann F; Arancio O; Ziff EB
    Proc Natl Acad Sci U S A; 2015 Mar; 112(10):3122-7. PubMed ID: 25713349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial memory deficits and motor coordination facilitation in cGMP-dependent protein kinase type II-deficient mice.
    Wincott CM; Kim S; Titcombe RF; Tukey DS; Girma HK; Pick JE; Devito LM; Hofmann F; Hoeffer C; Ziff EB
    Neurobiol Learn Mem; 2013 Jan; 99():32-7. PubMed ID: 23103773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of Cgkii Suppresses Seizure Activity and Hippocampal Excitation by Regulating the Postsynaptic Delivery of Glua1.
    Gu J; Tian X; Wang W; Yang Q; Lin P; Ma Y; Xiong Y; Xu D; Zhang Y; Yang Y; Lu S; Lin Z; Luo J; Xiao F; Wang X
    Cell Physiol Biochem; 2018; 46(1):160-177. PubMed ID: 29587280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. cGMP-dependent protein kinase type II knockout mice exhibit working memory impairments, decreased repetitive behavior, and increased anxiety-like traits.
    Wincott CM; Abera S; Vunck SA; Tirko N; Choi Y; Titcombe RF; Antoine SO; Tukey DS; DeVito LM; Hofmann F; Hoeffer CA; Ziff EB
    Neurobiol Learn Mem; 2014 Oct; 114():32-9. PubMed ID: 24752151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The type II cGMP dependent protein kinase regulates GluA1 levels at the plasma membrane of developing cerebellar granule cells.
    Incontro S; Ciruela F; Ziff E; Hofmann F; Sánchez-Prieto J; Torres M
    Biochim Biophys Acta; 2013 Aug; 1833(8):1820-31. PubMed ID: 23545413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A GluR1-cGKII interaction regulates AMPA receptor trafficking.
    Serulle Y; Zhang S; Ninan I; Puzzo D; McCarthy M; Khatri L; Arancio O; Ziff EB
    Neuron; 2007 Nov; 56(4):670-88. PubMed ID: 18031684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Regulation of AMPAR Phosphorylation In Vivo Following Acute Behavioral Stress.
    Caudal D; Rame M; Jay TM; Godsil BP
    Cell Mol Neurobiol; 2016 Nov; 36(8):1331-1342. PubMed ID: 26814839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of AMPA receptor phosphorylation by the neuropeptide PACAP38.
    Toda AM; Huganir RL
    Proc Natl Acad Sci U S A; 2015 May; 112(21):6712-7. PubMed ID: 25964356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-permeable AMPA receptor activity and GluA1 trafficking in the basolateral amygdala regulate operant alcohol self-administration.
    Faccidomo S; Cogan ES; Hon OJ; Hoffman JL; Saunders BL; Eastman VR; Kim M; Taylor SM; McElligott ZA; Hodge CW
    Addict Biol; 2021 Sep; 26(5):e13049. PubMed ID: 33955100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A role for cGMP-dependent protein kinase II in AMPA receptor trafficking and synaptic plasticity.
    Serulle Y; Arancio O; Ziff EB
    Channels (Austin); 2008; 2(4):230-2. PubMed ID: 18728399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lmtk3-KO Mice Display a Range of Behavioral Abnormalities and Have an Impairment in GluA1 Trafficking.
    Montrose K; Kobayashi S; Manabe T; Yamamoto T
    Neuroscience; 2019 Aug; 414():154-167. PubMed ID: 31310731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Function of cGMP-dependent protein kinase II in volume load-induced diuresis.
    Schramm A; Schinner E; Huettner JP; Kees F; Tauber P; Hofmann F; Schlossmann J
    Pflugers Arch; 2014 Oct; 466(10):2009-18. PubMed ID: 24442122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amygdala levels of the GluA1 subunit of glutamate receptors and its phosphorylation state at serine 845 in the anterior hippocampus are biomarkers of ictal fear but not anxiety.
    Leal RB; Lopes MW; Formolo DA; de Carvalho CR; Hoeller AA; Latini A; Sousa DS; Wolf P; Prediger RD; Bortolotto ZA; Linhares MN; Lin K; Walz R
    Mol Psychiatry; 2020 Mar; 25(3):655-665. PubMed ID: 29880883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ABA renewal involves enhancements in both GluA2-lacking AMPA receptor activity and GluA1 phosphorylation in the lateral amygdala.
    Park K; Song B; Kim J; Hong I; Song S; Lee J; Park S; Kim J; An B; Lee HW; Lee S; Kim H; Lee JC; Lee S; Choi S
    PLoS One; 2014; 9(6):e100108. PubMed ID: 24925360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic increases in AMPA receptor phosphorylation in the rat hippocampus in response to amphetamine.
    Mao LM; Xue B; Jin DZ; Wang JQ
    J Neurochem; 2015 Jun; 133(6):795-805. PubMed ID: 25689263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein phosphatase role in adenosine A1 receptor-induced AMPA receptor trafficking and rat hippocampal neuronal damage in hypoxia/reperfusion injury.
    Stockwell J; Chen Z; Niazi M; Nosib S; Cayabyab FS
    Neuropharmacology; 2016 Mar; 102():254-65. PubMed ID: 26626486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IL-1β reduces GluA1 phosphorylation and its surface expression during memory reconsolidation and α-melanocyte-stimulating hormone can modulate these effects.
    Machado I; Schiöth HB; Lasaga M; Scimonelli T
    Neuropharmacology; 2018 Jan; 128():314-323. PubMed ID: 29042315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. M1 muscarinic receptor facilitates cognitive function by interplay with AMPA receptor GluA1 subunit.
    Zhao LX; Ge YH; Xiong CH; Tang L; Yan YH; Law PY; Qiu Y; Chen HZ
    FASEB J; 2018 Aug; 32(8):4247-4257. PubMed ID: 29509512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GluA1 and its PDZ-interaction: a role in experience-dependent behavioral plasticity in the forced swim test.
    Freudenberg F; Marx V; Mack V; Layer LE; Klugmann M; Seeburg PH; Sprengel R; Celikel T
    Neurobiol Dis; 2013 Apr; 52():160-7. PubMed ID: 23262314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.