These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
347 related articles for article (PubMed ID: 27421908)
1. Mechanistic aspects of the formation of α-dystroglycan and therapeutic research for the treatment of α-dystroglycanopathy: A review. Taniguchi-Ikeda M; Morioka I; Iijima K; Toda T Mol Aspects Med; 2016 Oct; 51():115-24. PubMed ID: 27421908 [TBL] [Abstract][Full Text] [Related]
2. [Recent Advances in α-dystroglycanopathy]. Kuga A; Kanagawa M; Toda T Brain Nerve; 2011 Nov; 63(11):1189-95. PubMed ID: 22068471 [TBL] [Abstract][Full Text] [Related]
3. Glycosylation with ribitol-phosphate in mammals: New insights into the O-mannosyl glycan. Manya H; Endo T Biochim Biophys Acta Gen Subj; 2017 Oct; 1861(10):2462-2472. PubMed ID: 28711406 [TBL] [Abstract][Full Text] [Related]
4. [Alpha-dystroglycanopathy (FCMD, MEB, etc): abnormal glycosylation and muscular dystrophy]. Toda T Rinsho Shinkeigaku; 2005 Nov; 45(11):932-4. PubMed ID: 16447766 [TBL] [Abstract][Full Text] [Related]
5. Fukutin is prerequisite to ameliorate muscular dystrophic phenotype by myofiber-selective LARGE expression. Ohtsuka Y; Kanagawa M; Yu CC; Ito C; Chiyo T; Kobayashi K; Okada T; Takeda S; Toda T Sci Rep; 2015 Feb; 5():8316. PubMed ID: 25661440 [TBL] [Abstract][Full Text] [Related]
6. Fukuyama-type congenital muscular dystrophy (FCMD) and alpha-dystroglycanopathy. Toda T; Kobayashi K; Takeda S; Sasaki J; Kurahashi H; Kano H; Tachikawa M; Wang F; Nagai Y; Taniguchi K; Taniguchi M; Sunada Y; Terashima T; Endo T; Matsumura K Congenit Anom (Kyoto); 2003 Jun; 43(2):97-104. PubMed ID: 12893968 [TBL] [Abstract][Full Text] [Related]
7. Glycosylation defects: a new mechanism for muscular dystrophy? Grewal PK; Hewitt JE Hum Mol Genet; 2003 Oct; 12 Spec No 2():R259-64. PubMed ID: 12925572 [TBL] [Abstract][Full Text] [Related]
8. The role of defective glycosylation in congenital muscular dystrophy. Schachter H; Vajsar J; Zhang W Glycoconj J; 2004; 20(5):291-300. PubMed ID: 15229394 [TBL] [Abstract][Full Text] [Related]
9. biAb Mediated Restoration of the Linkage between Dystroglycan and Laminin-211 as a Therapeutic Approach for α-Dystroglycanopathies. Gumlaw N; Sevigny LM; Zhao H; Luo Z; Bangari DS; Masterjohn E; Chen Y; McDonald B; Magnay M; Travaline T; Yoshida-Moriguchi T; Fan W; Reczek D; Stefano JE; Qiu H; Beil C; Lange C; Rao E; Lukason M; Barry E; Brondyk WH; Zhu Y; Cheng SH Mol Ther; 2020 Feb; 28(2):664-676. PubMed ID: 31843448 [TBL] [Abstract][Full Text] [Related]
10. [Emerging novel therapeutic strategy for α-dystroglycanopathy by Large]. Saito F Rinsho Shinkeigaku; 2011 Nov; 51(11):918-21. PubMed ID: 22277416 [TBL] [Abstract][Full Text] [Related]
11. Hypoglycosylation of dystroglycan due to T192M mutation: a molecular insight behind the fact. Bhattacharya S; Das A; Ghosh S; Dasgupta R; Bagchi A Gene; 2014 Mar; 537(1):108-14. PubMed ID: 24361964 [TBL] [Abstract][Full Text] [Related]
12. Carbohydrate-binding domain of the POMGnT1 stem region modulates O-mannosylation sites of α-dystroglycan. Kuwabara N; Manya H; Yamada T; Tateno H; Kanagawa M; Kobayashi K; Akasaka-Manya K; Hirose Y; Mizuno M; Ikeguchi M; Toda T; Hirabayashi J; Senda T; Endo T; Kato R Proc Natl Acad Sci U S A; 2016 Aug; 113(33):9280-5. PubMed ID: 27493216 [TBL] [Abstract][Full Text] [Related]
14. [Pathomechanism and therapeutic strategy of Fukuyama congenital muscular dystrophy and related disorders]. Toda T Rinsho Shinkeigaku; 2009 Nov; 49(11):859-62. PubMed ID: 20030231 [TBL] [Abstract][Full Text] [Related]
15. A new monoclonal antibody DAG-6F4 against human alpha-dystroglycan reveals reduced core protein in some, but not all, dystroglycanopathy patients. Humphrey EL; Lacey E; Le LT; Feng L; Sciandra F; Morris CR; Hewitt JE; Holt I; Brancaccio A; Barresi R; Sewry CA; Brown SC; Morris GE Neuromuscul Disord; 2015 Jan; 25(1):32-42. PubMed ID: 25387694 [TBL] [Abstract][Full Text] [Related]
17. [Dystroglycan linkage and muscular dystrophy]. Shimizu T Rinsho Shinkeigaku; 2002 Nov; 42(11):1091-4. PubMed ID: 12784674 [TBL] [Abstract][Full Text] [Related]
18. Autologous intramuscular transplantation of engineered satellite cells induces exosome-mediated systemic expression of Fukutin-related protein and rescues disease phenotype in a murine model of limb-girdle muscular dystrophy type 2I. Frattini P; Villa C; De Santis F; Meregalli M; Belicchi M; Erratico S; Bella P; Raimondi MT; Lu Q; Torrente Y Hum Mol Genet; 2017 Oct; 26(19):3682-3698. PubMed ID: 28666318 [TBL] [Abstract][Full Text] [Related]
19. Residual laminin-binding activity and enhanced dystroglycan glycosylation by LARGE in novel model mice to dystroglycanopathy. Kanagawa M; Nishimoto A; Chiyonobu T; Takeda S; Miyagoe-Suzuki Y; Wang F; Fujikake N; Taniguchi M; Lu Z; Tachikawa M; Nagai Y; Tashiro F; Miyazaki J; Tajima Y; Takeda S; Endo T; Kobayashi K; Campbell KP; Toda T Hum Mol Genet; 2009 Feb; 18(4):621-31. PubMed ID: 19017726 [TBL] [Abstract][Full Text] [Related]
20. Muscular Dystrophy with Ribitol-Phosphate Deficiency: A Novel Post-Translational Mechanism in Dystroglycanopathy. Kanagawa M; Toda T J Neuromuscul Dis; 2017; 4(4):259-267. PubMed ID: 29081423 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]