These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 27421986)

  • 1. Regulation of MAP kinase Hog1 by calmodulin during hyperosmotic stress.
    Kim J; Oh J; Sung GH
    Biochim Biophys Acta; 2016 Nov; 1863(11):2551-2559. PubMed ID: 27421986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of the Hog1 MAPK by the Ssk2/Ssk22 MAP3Ks, in the absence of the osmosensors, is not sufficient to trigger osmostress adaptation in Saccharomyces cerevisiae.
    Vázquez-Ibarra A; Subirana L; Ongay-Larios L; Kawasaki L; Rojas-Ortega E; Rodríguez-González M; de Nadal E; Posas F; Coria R
    FEBS J; 2018 Mar; 285(6):1079-1096. PubMed ID: 29341399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of mitogen-activated protein kinase signaling specificity in response to hyperosmotic stress: use of an analog-sensitive HOG1 allele.
    Westfall PJ; Thorner J
    Eukaryot Cell; 2006 Aug; 5(8):1215-28. PubMed ID: 16896207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tighter αC-helix-αL16-helix interactions seem to make p38α less prone to activation by autophosphorylation than Hog1.
    Tesker M; Selamat SE; Beenstock J; Hayouka R; Livnah O; Engelberg D
    Biosci Rep; 2016; 36(2):. PubMed ID: 26987986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of osmosensing signal transduction in Metazoa: stress-activated protein kinases p38 and JNK.
    Böhm M; Gamulin V; Schröder HC; Müller WE
    Cell Tissue Res; 2002 Jun; 308(3):431-8. PubMed ID: 12107436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In yeast, loss of Hog1 leads to osmosensitivity of autophagy.
    Prick T; Thumm M; Köhrer K; Häussinger D; Vom Dahl S
    Biochem J; 2006 Feb; 394(Pt 1):153-61. PubMed ID: 16321140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissection of the elements of osmotic stress response transcription factor Hot1 involved in the interaction with MAPK Hog1 and in the activation of transcription.
    Gomar-Alba M; Alepuz P; del Olmo Ml
    Biochim Biophys Acta; 2013 Oct; 1829(10):1111-25. PubMed ID: 23916462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initiation of the transcriptional response to hyperosmotic shock correlates with the potential for volume recovery.
    Geijer C; Medrala-Klein D; Petelenz-Kurdziel E; Ericsson A; Smedh M; Andersson M; Goksör M; Nadal-Ribelles M; Posas F; Krantz M; Nordlander B; Hohmann S
    FEBS J; 2013 Aug; 280(16):3854-67. PubMed ID: 23758973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional characterization of human and fungal MAP kinases in Saccharomyces cerevisiae.
    Alonso-Monge R; Ureña T; Nombela C; Pla J
    Yeast; 2007 Sep; 24(9):715-22. PubMed ID: 17568451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitogen-activated protein kinase Hog1 mediates adaptation to G1 checkpoint arrest during arsenite and hyperosmotic stress.
    Migdal I; Ilina Y; Tamás MJ; Wysocki R
    Eukaryot Cell; 2008 Aug; 7(8):1309-17. PubMed ID: 18552285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Hog1 MAP kinase pathway and the Mec1 DNA damage checkpoint pathway independently control the cellular responses to hydrogen peroxide.
    Haghnazari E; Heyer WD
    DNA Repair (Amst); 2004 Jul; 3(7):769-76. PubMed ID: 15177185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence of antagonistic regulation of restart from G(1) delay in response to osmotic stress by the Hog1 and Whi3 in budding yeast.
    Mizunuma M; Ogawa T; Koyama T; Shitamukai A; Tsubakiyama R; Komaruyama T; Yamaguchi T; Kume K; Hirata D
    Biosci Biotechnol Biochem; 2013; 77(10):2002-7. PubMed ID: 24096659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The yeast MAPK Hog1 is not essential for immediate survival under osmostress.
    Maayan I; Engelberg D
    FEBS Lett; 2009 Jun; 583(12):2015-20. PubMed ID: 19447106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-cancer drug KP1019 induces Hog1 phosphorylation and protein ubiquitylation in Saccharomyces cerevisiae.
    Singh V; Azad GK; Reddy M A; Baranwal S; Tomar RS
    Eur J Pharmacol; 2014 Aug; 736():77-85. PubMed ID: 24797784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delayed Turnover of Unphosphorylated Ssk1 during Carbon Stress Activates the Yeast Hog1 Map Kinase Pathway.
    Vallejo MC; Mayinger P
    PLoS One; 2015; 10(9):e0137199. PubMed ID: 26340004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osmostress induces autophosphorylation of Hog1 via a C-terminal regulatory region that is conserved in p38α.
    Maayan I; Beenstock J; Marbach I; Tabachnick S; Livnah O; Engelberg D
    PLoS One; 2012; 7(9):e44749. PubMed ID: 22984552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A systems biology analysis of long and short-term memories of osmotic stress adaptation in fungi.
    You T; Ingram P; Jacobsen MD; Cook E; McDonagh A; Thorne T; Lenardon MD; de Moura AP; Romano MC; Thiel M; Stumpf M; Gow NA; Haynes K; Grebogi C; Stark J; Brown AJ
    BMC Res Notes; 2012 May; 5():258. PubMed ID: 22631601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leptospiral lipopolysaccharide mediated Hog1 phosphorylation in Saccharomyces cerevisiae directs activation of autophagy.
    Bothammal P; Prasad M; Muralitharan G; Natarajaseenivasan K
    Microb Pathog; 2022 Dec; 173(Pt A):105840. PubMed ID: 36273740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeast osmosensors Hkr1 and Msb2 activate the Hog1 MAPK cascade by different mechanisms.
    Tanaka K; Tatebayashi K; Nishimura A; Yamamoto K; Yang HY; Saito H
    Sci Signal; 2014 Feb; 7(314):ra21. PubMed ID: 24570489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two adjacent docking sites in the yeast Hog1 mitogen-activated protein (MAP) kinase differentially interact with the Pbs2 MAP kinase kinase and the Ptp2 protein tyrosine phosphatase.
    Murakami Y; Tatebayashi K; Saito H
    Mol Cell Biol; 2008 Apr; 28(7):2481-94. PubMed ID: 18212044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.