BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 27423035)

  • 1. An experimental study on the formation of methoxyaromatics during pyrolysis of Eucalyptus pulverulenta: Yields and mechanisms.
    Xu J; Tahmasebi A; Yu J
    Bioresour Technol; 2016 Oct; 218():743-50. PubMed ID: 27423035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-oil production via catalytic pyrolysis of Anchusa azurea: Effects of operating conditions on product yields and chromatographic characterization.
    Aysu T; Durak H; Güner S; Bengü AŞ; Esim N
    Bioresour Technol; 2016 Apr; 205():7-14. PubMed ID: 26800388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic pyrolysis of Alcea pallida stems in a fixed-bed reactor for production of liquid bio-fuels.
    Aysu T
    Bioresour Technol; 2015 Sep; 191():253-62. PubMed ID: 26000835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-situ catalytic pyrolysis upgradation of microalgae into hydrocarbon rich bio-oil: Effects of nitrogen and carbon dioxide environment.
    Mo L; Dai H; Feng L; Liu B; Li X; Chen Y; Khan S
    Bioresour Technol; 2020 Oct; 314():123758. PubMed ID: 32629379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of torrefaction with Mg-based additives on the pyrolysis of cotton stalk.
    Zeng K; Yang Q; Zhang Y; Mei Y; Wang X; Yang H; Shao J; Li J; Chen H
    Bioresour Technol; 2018 Aug; 261():62-69. PubMed ID: 29653335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave-assisted catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil.
    Mamaeva A; Tahmasebi A; Tian L; Yu J
    Bioresour Technol; 2016 Jul; 211():382-9. PubMed ID: 27030958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor.
    Morgan TJ; Turn SQ; George A
    PLoS One; 2015; 10(8):e0136511. PubMed ID: 26308860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shells.
    Choi GG; Oh SJ; Lee SJ; Kim JS
    Bioresour Technol; 2015 Feb; 178():99-107. PubMed ID: 25227587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of hydrothermal pretreatment on properties of bio-oil produced from fast pyrolysis of eucalyptus wood in a fluidized bed reactor.
    Chang S; Zhao Z; Zheng A; Li X; Wang X; Huang Z; He F; Li H
    Bioresour Technol; 2013 Jun; 138():321-8. PubMed ID: 23624050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of phenol-rich bio-oil during catalytic fixed-bed and microwave pyrolysis of palm kernel shell.
    Omoriyekomwan JE; Tahmasebi A; Yu J
    Bioresour Technol; 2016 May; 207():188-96. PubMed ID: 26890793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic flash pyrolysis of Scenedesmus sp. post-extraction residue using low-cost HZSM-5 catalyst with the perspective to produce renewable aromatic hydrocarbons.
    Marques JAO; Alves JLF; de Oliveira GP; Melo DMA; de Melo Viana GAC; Braga RM
    Environ Sci Pollut Res Int; 2024 Mar; 31(12):18785-18796. PubMed ID: 38349495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of torrefaction pretreatment and catalytic pyrolysis on the pyrolysis poly-generation of pine wood.
    Chen D; Li Y; Deng M; Wang J; Chen M; Yan B; Yuan Q
    Bioresour Technol; 2016 Aug; 214():615-622. PubMed ID: 27183238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of catalysts on distribution of polycyclic-aromatic hydrocarbon (PAHs) in bio-oils from the pyrolysis of dewatered sewage sludge at high and low temperatures.
    Hu Y; Yu W; Wibowo H; Xia Y; Lu Y; Yan M
    Sci Total Environ; 2019 Jun; 667():263-270. PubMed ID: 30831366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-oil production of softwood and hardwood forest industry residues through fast and intermediate pyrolysis and its chromatographic characterization.
    Torri ID; Paasikallio V; Faccini CS; Huff R; Caramão EB; Sacon V; Oasmaa A; Zini CA
    Bioresour Technol; 2016 Jan; 200():680-90. PubMed ID: 26556402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The slow and fast pyrolysis of cherry seed.
    Duman G; Okutucu C; Ucar S; Stahl R; Yanik J
    Bioresour Technol; 2011 Jan; 102(2):1869-78. PubMed ID: 20801019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char.
    Norouzi O; Jafarian S; Safari F; Tavasoli A; Nejati B
    Bioresour Technol; 2016 Nov; 219():643-651. PubMed ID: 27544914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study on pyrolysis of Canada thistle (Cirsium arvense) with titania based catalysts for bio-fuel production.
    Aysu T
    Bioresour Technol; 2016 Nov; 219():175-184. PubMed ID: 27490443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene.
    Solak A; Rutkowski P
    Waste Manag; 2014 Feb; 34(2):504-12. PubMed ID: 24252369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast pyrolysis of durian (Durio zibethinus L) shell in a drop-type fixed bed reactor: Pyrolysis behavior and product analyses.
    Tan YL; Abdullah AZ; Hameed BH
    Bioresour Technol; 2017 Nov; 243():85-92. PubMed ID: 28651142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of phenols and biofuels by catalytic microwave pyrolysis of lignocellulosic biomass.
    Bu Q; Lei H; Ren S; Wang L; Zhang Q; Tang J; Ruan R
    Bioresour Technol; 2012 Mar; 108():274-9. PubMed ID: 22261662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.