BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 27423128)

  • 1. Confocal Raman microscopy and fluorescent in situ hybridization - A complementary approach for biofilm analysis.
    Kniggendorf AK; Nogueira R; Kelb C; Schadzek P; Meinhardt-Wollweber M; Ngezahayo A; Roth B
    Chemosphere; 2016 Oct; 161():112-118. PubMed ID: 27423128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new approach to non-destructive analysis of biofilms by confocal Raman microscopy.
    Pätzold R; Keuntje M; Anders-von Ahlften A
    Anal Bioanal Chem; 2006 Sep; 386(2):286-92. PubMed ID: 16868726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system.
    Satoh H; Odagiri M; Ito T; Okabe S
    Water Res; 2009 Oct; 43(18):4729-39. PubMed ID: 19709714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging of endodontic biofilms by combined microscopy (FISH/cLSM - SEM).
    Schaudinn C; Carr G; Gorur A; Jaramillo D; Costerton JW; Webster P
    J Microsc; 2009 Aug; 235(2):124-7. PubMed ID: 19659906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cultivation-independent, semiautomatic determination of absolute bacterial cell numbers in environmental samples by fluorescence in situ hybridization.
    Daims H; Ramsing NB; Schleifer KH; Wagner M
    Appl Environ Microbiol; 2001 Dec; 67(12):5810-8. PubMed ID: 11722938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial communities and their interactions in biofilm systems: an overview.
    Wuertz S; Okabe S; Hausner M
    Water Sci Technol; 2004; 49(11-12):327-36. PubMed ID: 15303758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial composition and structure of aerobic granular sewage biofilms.
    Weber SD; Ludwig W; Schleifer KH; Fried J
    Appl Environ Microbiol; 2007 Oct; 73(19):6233-40. PubMed ID: 17704280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization.
    Dige I; Nilsson H; Kilian M; Nyvad B
    Eur J Oral Sci; 2007 Dec; 115(6):459-67. PubMed ID: 18028053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Of microparticles and bacteria identification--(resonance) Raman micro-spectroscopy as a tool for biofilm analysis.
    Kniggendorf AK; Meinhardt-Wollweber M
    Water Res; 2011 Oct; 45(15):4571-82. PubMed ID: 21741670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of dissolved oxygen concentration on the biofilm and in situ analysis by fluorescence in situ hybridization (FISH) and microelectrodes.
    Jang A; Bishop PL; Okabe S; Lee SG; Kim IS
    Water Sci Technol; 2003; 47(1):49-57. PubMed ID: 12578173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of activated sludge flocs by confocal laser scanning microscopy and image analysis.
    Schmid M; Thill A; Purkhold U; Walcher M; Bottero JY; Ginestet P; Nielsen PH; Wuertz S; Wagner M
    Water Res; 2003 May; 37(9):2043-52. PubMed ID: 12691889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rapid method to quantify nitrifiers in activated sludge.
    Manser R; Muche K; Gujer W; Siegrist H
    Water Res; 2005 Apr; 39(8):1585-93. PubMed ID: 15878031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ characterization of nitrifying biofilm: minimizing biomass loss and preserving perspective.
    Delatolla R; Tufenkji N; Comeau Y; Lamarre D; Gadbois A; Berk D
    Water Res; 2009 Apr; 43(6):1775-87. PubMed ID: 19217138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. daime, a novel image analysis program for microbial ecology and biofilm research.
    Daims H; Lücker S; Wagner M
    Environ Microbiol; 2006 Feb; 8(2):200-13. PubMed ID: 16423009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A polyphasic approach to study ecophysiology of complex multispecies nitrifying biofilms.
    Okabe S; Satoh H; Kindaichi T
    Methods Enzymol; 2011; 496():163-84. PubMed ID: 21514464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Confocal Raman Microscopy of Hydrated Early Stages of Bacterial Biofilm Formation on Various Surfaces in a Flow Cell.
    Smith-Palmer T; Lin S; Oguejiofor I; Leng T; Pustam A; Yang J; Graham LL; Wyeth RC; Bishop CD; DeMont ME; Pink D
    Appl Spectrosc; 2016 Feb; 70(2):289-301. PubMed ID: 26903564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging biofilms using fluorescence
    Barbosa A; Miranda S; Azevedo NF; Cerqueira L; Azevedo AS
    Front Cell Infect Microbiol; 2023; 13():1195803. PubMed ID: 37284501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined use of confocal laser scanning microscopy (CLSM) and Raman microscopy (RM): investigations on EPS-Matrix.
    Wagner M; Ivleva NP; Haisch C; Niessner R; Horn H
    Water Res; 2009 Jan; 43(1):63-76. PubMed ID: 19019406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ.
    Sandt C; Smith-Palmer T; Pink J; Brennan L; Pink D
    J Appl Microbiol; 2007 Nov; 103(5):1808-20. PubMed ID: 17953591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ surface-enhanced Raman scattering analysis of biofilm.
    Ivleva NP; Wagner M; Horn H; Niessner R; Haisch C
    Anal Chem; 2008 Nov; 80(22):8538-44. PubMed ID: 18947197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.