BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 27423128)

  • 21. Evaluation of the impact of bioaugmentation and biostimulation by in situ hybridization and microelectrode.
    Satoh H; Okabe S; Yamaguchi Y; Watanabe Y
    Water Res; 2003 May; 37(9):2206-16. PubMed ID: 12691906
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial organization of Pseudomonas aeruginosa biofilms probed by combined matrix-assisted laser desorption ionization mass spectrometry and confocal Raman microscopy.
    Masyuko RN; Lanni EJ; Driscoll CM; Shrout JD; Sweedler JV; Bohn PW
    Analyst; 2014 Nov; 139(22):5700-8. PubMed ID: 24883432
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mapping of a Subgingival Dual-Species Biofilm Model Using Confocal Raman Microscopy.
    Kriem LS; Wright K; Ccahuana-Vasquez RA; Rupp S
    Front Microbiol; 2021; 12():729720. PubMed ID: 34675902
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial composition and structure of a rotating biological contactor biofilm treating ammonium-rich wastewater without organic carbon.
    Egli K; Bosshard F; Werlen C; Lais P; Siegrist H; Zehnder AJ; Van der Meer JR
    Microb Ecol; 2003 May; 45(4):419-32. PubMed ID: 12704553
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of detection specificity of nitrifying bacteria in biofilm using fluorescence in situ hybridization and in situ fluorescent antibody methods.
    Noda N; Ebie Y; Matsumura M; Tsuneda S; Hirata A; Inamori Y
    Water Sci Technol; 2003; 47(5):129-32. PubMed ID: 12701917
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy.
    Ivleva NP; Wagner M; Horn H; Niessner R; Haisch C
    Anal Bioanal Chem; 2009 Jan; 393(1):197-206. PubMed ID: 18979092
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function.
    Huang WE; Stoecker K; Griffiths R; Newbold L; Daims H; Whiteley AS; Wagner M
    Environ Microbiol; 2007 Aug; 9(8):1878-89. PubMed ID: 17635536
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Raman microspectroscopy, surface-enhanced Raman scattering microspectroscopy, and stable-isotope Raman microspectroscopy for biofilm characterization.
    Ivleva NP; Kubryk P; Niessner R
    Anal Bioanal Chem; 2017 Jul; 409(18):4353-4375. PubMed ID: 28389920
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitrification in sequencing biofilm batch reactors: lessons from molecular approaches.
    Daims H; Purkhold U; Bjerrum L; Arnold E; Wilderer PA; Wagner M
    Water Sci Technol; 2001; 43(3):9-18. PubMed ID: 11381937
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants.
    Daims H; Nielsen JL; Nielsen PH; Schleifer KH; Wagner M
    Appl Environ Microbiol; 2001 Nov; 67(11):5273-84. PubMed ID: 11679356
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Raman microscopy and surface-enhanced Raman scattering (SERS) for in situ analysis of biofilms.
    Ivleva NP; Wagner M; Horn H; Niessner R; Haisch C
    J Biophotonics; 2010 Aug; 3(8-9):548-56. PubMed ID: 20589769
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of legionella in various sample types using whole-cell fluorescent in situ hybridization.
    Declerck P; Ollevier F
    Methods Mol Biol; 2006; 345():175-83. PubMed ID: 16957355
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Population dynamics and in situ kinetics of nitrifying bacteria in autotrophic nitrifying biofilms as determined by real-time quantitative PCR.
    Kindaichi T; Kawano Y; Ito T; Satoh H; Okabe S
    Biotechnol Bioeng; 2006 Aug; 94(6):1111-21. PubMed ID: 16596626
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluorescent in situ hybridization (FISH) for the detection of bacterial community in activated sludge from textile factories.
    Aktan S; Salih BA
    Environ Technol; 2006 Jan; 27(1):63-9. PubMed ID: 16457176
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of three FISH procedures for in situ detection of anaerobic ammonium oxidizing bacteria in biological wastewater treatment.
    Pavlekovic M; Schmid MC; Schmider-Poignee N; Spring S; Pilhofer M; Gaul T; Fiandaca M; Löffler FE; Jetten M; Schleifer KH; Lee NM
    J Microbiol Methods; 2009 Aug; 78(2):119-26. PubMed ID: 19389431
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and function of nitrifying biofilms as determined by molecular techniques and the use of microelectrodes.
    Okabe S; Naitoh H; Satoh H; Watanabe Y
    Water Sci Technol; 2002; 46(1-2):233-41. PubMed ID: 12216629
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In situ activity and spatial organization of anaerobic ammonium-oxidizing (anammox) bacteria in biofilms.
    Kindaichi T; Tsushima I; Ogasawara Y; Shimokawa M; Ozaki N; Satoh H; Okabe S
    Appl Environ Microbiol; 2007 Aug; 73(15):4931-9. PubMed ID: 17526785
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbial community structure in activated sludge floc analysed by fluorescence in situ hybridization and its relation to floc stability.
    Wilén BM; Onuki M; Hermansson M; Lumley D; Mino T
    Water Res; 2008 Apr; 42(8-9):2300-8. PubMed ID: 18206208
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Candida biofilm analysis in the artificial throat using FISH.
    Krom BP; Buijssen K; Busscher HJ; van der Mei HC
    Methods Mol Biol; 2009; 499():45-54. PubMed ID: 19152038
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CARD-FISH and confocal laser scanner microscopy to assess successional changes of the bacterial community in freshwater biofilms.
    Lupini G; Proia L; Di Maio M; Amalfitano S; Fazi S
    J Microbiol Methods; 2011 Aug; 86(2):248-51. PubMed ID: 21621565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.